255 research outputs found

    Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles

    Full text link
    We present a general study of frequency and magnetic field dependence of the specific heat power produced during field-driven hysteresis cycles in magnetic nanoparticles with relevance to hyperthermia applications in biomedicine. Employing a kinetic Monte-Carlo method with natural time scales allows us to go beyond the assumptions of small driving field amplitudes and negligible inter-particle interactions, which are fundamental to applicability of the standard approach based on linear response theory. The method captures the superparamagnetic and fully hysteretic regimes and the transition between them. Our results reveal unexpected dipolar interaction-induced enhancement or suppression of the specific heat power, dependent on the intrinsic statistical properties of particles, which cannot be accounted for by the standard theory. Although the actual heating power is difficult to predict because of the effects of interactions, optimum heating is in the transition region between the superparamagnetic and fully hysteretic regimes

    Modeling of long-time thermal magnetization decay in interacting granular magnetic materials

    Get PDF
    We present a general method to evaluate the long-time magnetization decay in granular magnetic systems. The method is based on Arrhenius-Neel kinetics with the evaluation of the energy barriers in a multidimensional space. To establish a possible reversal mode, we suggest the use of Metropolis Monte Carlo and for the mode statistical sampling-the kinetic Monte Carlo criteria. The examples considered include long-time magnetization decay in CoCrPt low-magnetization longitudinal recording media and in a collection of Co particles with different concentrations

    Parametric optimization for terabit perpendicular recording

    Get PDF
    The design of media for ultrahigh-density perpendicular recording is discussed in depth. Analytical and semianalytical models are developed to determine the constraints upon the media to fulfill requirements of writability and thermal stability, and the effect of intergranular exchange coupling is examined. The role of vector fields during the write process is examined, and it is shown that one-dimensional models of perpendicular recording have significant deficiencies. A micromagnetic model is described and the results of simulations of recording undertaken with the model are presented. The paper demonstrates that there is no physical reason why perpendicular recording should not be possible at or above 1 Tb/in(2)

    Orientation and temperature dependence of domain wall properties in FePt

    Get PDF
    An investigation of the orientation and temperature dependence of domain wall properties in FePt is presented. The authors use a microscopic, atomic model for the magnetic interactions within an effective, classical spin Hamiltonian constructed on the basis of spin-density functional calculations. They find a significant dependence of the domain wall width as well as the domain wall energy on the orientation of the wall with respect to the crystal lattice. Investigating the temperature dependence, they demonstrate the existence of elliptical domain walls in FePt at room temperature. The consequences of their findings for a micromagnetic continuum theory are discussed. (c) 2007 American Institute of Physics

    Effect of Pt impurities on the magnetocrystalline anisotropy of hcp Co: a first-principles study

    Get PDF
    In terms of the fully relativistic screened Korringa-Kohn-Rostoker method we investigate the variation in the magnetocrystalline anisotropy energy (MAE) of hexagonal close-packed cobalt with the addition of platinum impurities. In particular, we perform calculations on a bulk cobalt system in which one of the atomic layers contains a fractional, substitutional platinum impurity. Our calculations show that at small concentrations of platinum the MAE is reduced, while at larger concentrations the MAE is enhanced. This change of the MAE can be attributed to an interplay between on-site Pt MAE contributions and induced MAE contributions on the Co sites. The latter ones are subject to pronounced, long-ranged Friedel-oscillations that can lead to significant size effects in the experimental determination of the MAE of nano-sized samples.Comment: 16 page
    • …
    corecore