1,646 research outputs found

    Apollo experience report: The cryogenic storage system

    Get PDF
    A review of the design, development, and flight history of the Apollo cryogenic storage system and of selected components within the system is presented. Discussions are presented on the development history of the pressure vessels, heaters, insulation, and selected components. Flight experience and operational difficulties are reported in detail to provide definition of the problems and applicable corrective actions

    Monte Carlo calculations of high energy nucleon meson cascades and applications to galactic cosmic ray transport

    Get PDF
    Results obtained using a recently developed calculational method for determining the nucleon-meson cascade induced in thick materials by high-energy nucleons and charged pions are presented. The calculational method uses the intranuclear-cascade-evaporation model to treat nonelastic collisions by particles with energies approximately or smaller than GeV and an extrapolation model at higher energies. The following configurations are considered: (1) 19.2-GeV/c protons incident on iron; (2) 30.3-GeV/c protons incident on iron; (3) solar and galactic protons incident on the moon, and (4) galactic protons incident on tissue. For the first three configurations, experimental results are available and comparisons between the experimental and calculated results are given

    Superthermal electron processes in the upper atmosphere of Uranus: Aurora and electroglow

    Get PDF
    Strong ultraviolet emissions from the upper atmosphere of Uranus suggest that both auroral and electroglow phenomena are of significant aeronomical consequences in the structure of the upper atmosphere. Combined modeling and data analysis were performed to determine the effect of electroglow and auroral phenomena on the global heat and atomic hydrogen budgets in the Uranus upper atmosphere. The results indicate that the auroral and electroglow heat sources are not adequate to explain the high exospheric temperature observed at Uranus, but that the atomic hydrogen supplied by these processes is more than sufficient to explain the observations. The various superthermal electron distributions modeled have significantly different efficiencies for the various processes such as UV emission, heating, ionization, and atomic hydrogen production, and produce quite different H2 band spectra. However, additional information on the UV spectra and global parameters is needed before modeling can be used to distinguish between the possible mechanisms for electroglow

    Chemical propulsion research at MSFC

    Get PDF
    Chemical propulsion research reviews at Marshall Space Flight Cente

    Solar system constraints on the Dvali-Gabadadze-Porrati braneworld theory of gravity

    Get PDF
    A number of proposals have been put forward to account for the observed accelerating expansion of the Universe through modifications of gravity. One specific scenario, Dvali-Gabadadze-Porrati (DGP) gravity, gives rise to a potentially observable anomaly in the solar system: all planets would exhibit a common anomalous precession, dw/dt, in excess of the prediction of General Relativity. We have used the Planetary Ephemeris Program (PEP) along with planetary radar and radio tracking data to set a constraint of |dw/dt| < 0.02 arcseconds per century on the presence of any such common precession. This sensitivity falls short of that needed to detect the estimated universal precession of |dw/dt| = 5e-4 arcseconds per century expected in the DGP scenario. We discuss the fact that ranging data between objects that orbit in a common plane cannot constrain the DGP scenario. It is only through the relative inclinations of the planetary orbital planes that solar system ranging data have sensitivity to the DGP-like effect of universal precession. In addition, we illustrate the importance of performing a numerical evaluation of the sensitivity of the data set and model to any perturbative precession.Comment: 9 pages, 2 figures, accepted for publication in Phys. Rev.

    DE 1 RIMS operational characteristics

    Get PDF
    The Retarding Ion Mass Spectrometer (RIMS) on the Dynamics Explorer 1 spacecraft observes both the thermal and superthermal (50 eV) ions of the ionosphere and inner magnetosphere. It is capable of measuring the detailed species distribution function of these ions in many cases. It was equipped with an integral electrometer to permit in-flight calibration of the detector sensitivities and variations thereof. A guide to understanding the RIMS data set is given. The reduction process from count rates to physical quantities is discussed in some detail. The procedure used to establish in-flight calibration is described, and results of a comparison with densities from plasma wave measurements are provided. Finally, a discussion is provided of various anomalies in the data set, including changes of channeltron efficiency with time, spin modulation of the axial sensor heads, apparent potential differences between the sensor heads, and failures of the radial head retarding potential sweep and of the -Z axial head aperture plane bias. Studies of the RIMS data set should be conducted only with a thorough awareness of the material presented here, or in collaboration with one of the scientists actively involved with RIMS data analysis

    Thermal denaturation of fluctuating finite DNA chains: the role of bending rigidity in bubble nucleation

    Full text link
    Statistical DNA models available in the literature are often effective models where the base-pair state only (unbroken or broken) is considered. Because of a decrease by a factor of 30 of the effective bending rigidity of a sequence of broken bonds, or bubble, compared to the double stranded state, the inclusion of the molecular conformational degrees of freedom in a more general mesoscopic model is needed. In this paper we do so by presenting a 1D Ising model, which describes the internal base pair states, coupled to a discrete worm like chain model describing the chain configurations [J. Palmeri, M. Manghi, and N. Destainville, Phys. Rev. Lett. 99, 088103 (2007)]. This coupled model is exactly solved using a transfer matrix technique that presents an analogy with the path integral treatment of a quantum two-state diatomic molecule. When the chain fluctuations are integrated out, the denaturation transition temperature and width emerge naturally as an explicit function of the model parameters of a well defined Hamiltonian, revealing that the transition is driven by the difference in bending (entropy dominated) free energy between bubble and double-stranded segments. The calculated melting curve (fraction of open base pairs) is in good agreement with the experimental melting profile of polydA-polydT. The predicted variation of the mean-square-radius as a function of temperature leads to a coherent novel explanation for the experimentally observed thermal viscosity transition. Finally, the influence of the DNA strand length is studied in detail, underlining the importance of finite size effects, even for DNA made of several thousand base pairs.Comment: Latex, 28 pages pdf, 9 figure

    Low-temperature dynamical simulation of spin-boson systems

    Full text link
    The dynamics of spin-boson systems at very low temperatures has been studied using a real-time path-integral simulation technique which combines a stochastic Monte Carlo sampling over the quantum fluctuations with an exact treatment of the quasiclassical degrees of freedoms. To a large degree, this special technique circumvents the dynamical sign problem and allows the dynamics to be studied directly up to long real times in a numerically exact manner. This method has been applied to two important problems: (1) crossover from nonadiabatic to adiabatic behavior in electron transfer reactions, (2) the zero-temperature dynamics in the antiferromagnetic Kondo region 1/2<K<1 where K is Kondo's parameter.Comment: Phys. Rev. B (in press), 28 pages, 6 figure

    Preferential heating of light ions during an ionospheric Ar(+) injection experiment

    Get PDF
    The Argon Release for Controlled Studies (ARCS) 4 sounding rocket was launched northward into high altitude from Poker Flat Research Range on February 23, 1990. The vehicle crossed geomagnetic field lines containing discrete auroral activity. An instrumented subpayload released 100-eV and 200-eV Ar(+) ion beams sequentially, in a direction largely perpendicular to both the local geomagnetic field and the subpayload spin axis. The instrumented main payload was separated along field lines from the beam emitting subpayload by a distance which increased at a steady rate of approximately 2.4 m/s. Three dimensional mass spectrometric ion observations of ambient H(+) and O(+) ions, obtained on board the main payload, are presented. Main payload electric field observations in the frequency range 0-16 kHz, are also presented. These observations are presented to demonstrate the operation of transverse ion acceleration, which was differential with respect to ion mass, primarily during 100-eV beam operations. The preferential transverse acceleration of ambient H(+) ions, as compared with ambient O(+) ions, during the second, third, fourth, and fifth 100-eV beam operations, is attributed to a resonance among the injected Ar(+) ions, beam-generated lower hybrid waves, and H(+) ions in the tail of the ambient thermal distribution. This work provides experimental support of processes predicted by previously published theory and simulations
    • …
    corecore