6,040 research outputs found
Optical properties of current carrying molecular wires
We consider several fundamental optical phenomena involving single molecules
in biased metal-molecule-metal junctions. The molecule is represented by its
highest occupied and lowest unoccupied molecular orbitals, and the analysis
involves the simultaneous consideration of three coupled fluxes: the electronic
current through the molecule, energy flow between the molecule and
electron-hole excitations in the leads and the incident and/or emitted photon
flux. Using a unified theoretical approach based on the non-equilibrium Green
function method we derive expressions for the absorption lineshape (not an
observable but a ueful reference for considering yields of other optical
processes) and for the current induced molecular emission in such junctions. We
also consider conditions under which resonance radiation can induce electronic
current in an unbiased junction. We find that current driven molecular emission
and resonant light induced electronic currents in single molecule junctions can
be of observable magnitude under appropriate realizable conditions. In
particular, light induced current should be observed in junctions involving
molecular bridges that are characterized by strong charge transfer optical
transitions. For observing current induced molecular emission we find that in
addition to the familiar need to control the damping of molecular excitations
into the metal substrate the phenomenon is also sensitive to the way in which
the potential bias si distributed on the junction.Comment: 56 pages, 8 figures; submitted to JC
Super Terror: The Complex Relationship Between Sequential Art and Real World Political Violence
While scholars have recognized that the media plays a very important role in the understanding of terrorism and other forms of political violence, alternative and popular forms of media (such as the Comic Strip, Graphic Novel, Cartoon, etc.) have not been examined as closely by social scientists.
This research is concerned with the reaction by graphic narratives to events of terror and the graphic work as a way of influencing the public in its opinion of terror.
The main piece examined is Alan Moore’s V for Vendetta which was made as a discussion of the justification of terror witch specific historical examples such as Guy Fawkes and political violence in Ireland.
Another text that this paper explores is The 9/11 Report Graphic Adaptation that is a graphic work that was made in response to the September 11th terrorist attacks in an attempt to better educate the masses about the events leading up to the attack. In contrast to this, I will examine Paul Jenkin’s Marvel Civil War: Front Line, a superhero narrative which actively criticizes United States governmental policy post 9-11.
This research also starts a discussion of visual codes in Geoff John’s Green Lantern series that shows and then counters different stereotypes of Arab Americans that resulted from the aftermath of September eleventh and the War on Terror
Mapping isoprene emissions over North America using formaldehyde column observations from space
We present a methodology for deriving emissions of volatile organic compounds (VOC) using space-based column observations of formaldehyde (HCHO) and apply it to data from the Global Ozone Monitoring Experiment (GOME) satellite instrument over North America during July 1996. The HCHO column is related to local VOC emissions, with a spatial smearing that increases with the VOC lifetime. Isoprene is the dominant HCHO precursor over North America in summer, and its lifetime (≃1 hour) is sufficiently short that the smearing can be neglected. We use the Goddard Earth Observing System global 3-D model of tropospheric chemistry (GEOS-CHEM) to derive the relationship between isoprene emissions and HCHO columns over North America and use these relationships to convert the GOME HCHO columns to isoprene emissions. We also use the GEOS-CHEM model as an intermediary to validate the GOME HCHO column measurements by comparison with in situ observations. The GEOS-CHEM model including the Global Emissions Inventory Activity (GEIA) isoprene emission inventory provides a good simulation of both the GOME data (r2 = 0.69, n = 756, bias = +11%) and the in situ summertime HCHO measurements over North America (r2 = 0.47, n = 10, bias = −3%). The GOME observations show high values over regions of known high isoprene emissions and a day-to-day variability that is consistent with the temperature dependence of isoprene emission. Isoprene emissions inferred from the GOME data are 20% less than GEIA on average over North America and twice those from the U.S. EPA Biogenic Emissions Inventory System (BEIS2) inventory. The GOME isoprene inventory when implemented in the GEOS-CHEM model provides a better simulation of the HCHO in situ measurements than either GEIA or BEIS2 (r2 = 0.71, n = 10, bias = −10%)
Molecular transport junctions: Current from electronic excitations in the leads
Using a model comprising a 2-level bridge connecting free electron reservoirs
we show that coupling of a molecular bridge to electron-hole excitations in the
leads can markedly effect the source-drain current through a molecular
junction.In some cases, e.g. molecules that exhibit strong charge transfer
transitions, the contribution from electron-hole excitations can exceed the
Landauer elastic current and dominate the observed conduction.Comment: 4 pages, 2 figures, submitted to PR
Low-Complexity Sub-band Digital Predistortion for Spurious Emission Suppression in Noncontiguous Spectrum Access
Noncontiguous transmission schemes combined with high power-efficiency
requirements pose big challenges for radio transmitter and power amplifier (PA)
design and implementation. Due to the nonlinear nature of the PA, severe
unwanted emissions can occur, which can potentially interfere with neighboring
channel signals or even desensitize the own receiver in frequency division
duplexing (FDD) transceivers. In this article, to suppress such unwanted
emissions, a low-complexity sub-band DPD solution, specifically tailored for
spectrally noncontiguous transmission schemes in low-cost devices, is proposed.
The proposed technique aims at mitigating only the selected spurious
intermodulation distortion components at the PA output, hence allowing for
substantially reduced processing complexity compared to classical linearization
solutions. Furthermore, novel decorrelation based parameter learning solutions
are also proposed and formulated, which offer reduced computing complexity in
parameter estimation as well as the ability to track time-varying features
adaptively. Comprehensive simulation and RF measurement results are provided,
using a commercial LTE-Advanced mobile PA, to evaluate and validate the
effectiveness of the proposed solution in real world scenarios. The obtained
results demonstrate that highly efficient spurious component suppression can be
obtained using the proposed solutions
On-command enhancement of single molecule fluorescence using a gold nanoparticle as an optical nano-antenna
We investigate the coupling of a single molecule to a single spherical gold
nanoparticle acting as a nano-antenna. Using scanning probe technology, we
position the particle in front of the molecule with nanometer accuracy and
measure a strong enhancement of more than 20 times in the fluorescence
intensity simultaneous to a 20-fold shortening of the excited state lifetime.
Direct comparison with three-dimensional calculations allow us to decipher the
contributions of the excitation enhancement, spontaneous emission modification,
and quenching. Furthermore, we provide direct evidence for the role of the
particle plasmon resonance in the modification of the molecular emission.Comment: 5 pages, 4 figures. submitted to Phys.Rev.Lett. 12/04/200
Hydrogen peroxide filled poly(methyl methacrylate) microcapsules: potential oxygen delivery materials
This paper describes the synthesis of H2O2–H2O filled poly(methyl methacrylate) (PMMA) microcapsules as potential candidates for controlled O2 delivery. The microcapsules are prepared by a water-in-oil solvent emulsion and evaporation method. The results of this study describe the effect of process parameters on the characteristics of the microcapsules and on their in vitro performance. The size of the microcapsules, as determined from scanning electron microscopy, ranges from ∼5 to 30 μm and the size distribution is narrow. The microcapsules exhibit an internal morphology with entrapped H2O2–H2O droplets randomly distributed in the PMMA continuous phase. In vitro release studies of 4.5 wt% H2O2-loaded microcapsules show that ∼70% of the H2O2 releases in 24 h. This corresponds to a total O2 production of ∼12 cc/gram of dry microcapsules. Shelf-life studies show that the microcapsules retain ∼84 wt% of the initially loaded H2O2 after nine months storage at 2–8 °C, which is an attractive feature for clinical applications
Characterization of the OCO-2 instrument line shape functions using on-orbit solar measurements
Accurately characterizing the instrument line shape (ILS) of the Orbiting Carbon Observatory-2 (OCO-2) is challenging and highly important due to its high spectral resolution and requirement for retrieval accuracy (0. 25 %) compared to previous spaceborne grating spectrometers. On-orbit ILS functions for all three bands of the OCO-2 instrument have been derived using its frequent solar measurements and high-resolution solar reference spectra. The solar reference spectrum generated from the 2016 version of the Total Carbon Column Observing Network (TCCON) solar line list shows significant improvements in the fitting residual compared to the solar reference spectrum currently used in the version 7 Level 2 algorithm in the O₂ A band. The analytical functions used to represent the ILS of previous grating spectrometers are found to be inadequate for the OCO-2 ILS. Particularly, the hybrid Gaussian and super-Gaussian functions may introduce spurious variations, up to 5 % of the ILS width, depending on the spectral sampling position, when there is a spectral undersampling. Fitting a homogeneous stretch of the preflight ILS together with the relative widening of the wings of the ILS is insensitive to the sampling grid position and accurately captures the variation of ILS in the O₂ A band between decontamination events. These temporal changes of ILS may explain the spurious signals observed in the solar-induced fluorescence retrieval in barren areas
Measuring the quantum efficiency of single radiating dipoles using a scanning mirror
Using scanning probe techniques, we show the controlled manipulation of the
radiation from single dipoles. In one experiment we study the modification of
the fluorescence lifetime of a single molecular dipole in front of a movable
silver mirror. A second experiment demonstrates the changing plasmon spectrum
of a gold nanoparticle in front of a dielectric mirror. Comparison of our data
with theoretical models allows determination of the quantum efficiency of each
radiating dipole.Comment: 4 pages, 4 figure
Optical microscopy via spectral modifications of a nano-antenna
The existing optical microscopes form an image by collecting photons emitted
from an object. Here we report on the experimental realization of microscopy
without the need for direct optical communication with the sample. To achieve
this, we have scanned a single gold nanoparticle acting as a nano-antenna in
the near field of a sample and have studied the modification of its intrinsic
radiative properties by monitoring its plasmon spectrum.Comment: 6 pages, 4 figures (color
- …
