2,227 research outputs found

    Petrology and tectonic development of supracrustal sequence of Kerala Khondalite Belt, Southern India

    Get PDF
    The granulite terrain of southern India, of which the Kerala Khondalite belt (KKB) is a part, is unique in exposing crustal sections with arrested charnockite growth in different stages of transformation and in varied lithological association. The KKB with rocks of surficial origin and incipient charnockite development, poses several problems relating to the tectonics of burial of vast area and mechanisms involved in expelling initial H2O (causes of dryness) for granulite facies metamorphism. It is possible to infer the following sequence of events based on the field and laboratory studies: (1) derivation of protoliths of KKB from granitic uplands and deposition in fault bounded basin (cratonic rift); (2) subhorizontal deep burial of sediments; (3) intense deformation of infra and supracrustal rocks; (4) early granulite facies metamorphism predating F sub 2 - loss of primary structure in sediments and formation of charnockites from amphibole bearing gneisses and khondalites from pelites; (5) migmatisation and deformation of metasediments and gneisses; (6) second event of charnockite formation probably aided by internal CO2 build-up; and (7) isothermal uplift, entrapment of late CO2 and mixed CO2-H2O fluids, formation of second generation cordierites and cordierite symplectites

    First principles investigation of finite-temperature behavior in small sodium clusters

    Get PDF
    A systematic and detailed investigation of the finite-temperature behavior of small sodium clusters, Na_n, in the size range of n= 8 to 50 are carried out. The simulations are performed using density-functional molecular-dynamics with ultrasoft pseudopotentials. A number of thermodynamic indicators such as specific heat, caloric curve, root-mean-square bond length fluctuation, deviation energy, etc. are calculated for each of the clusters. Size dependence of these indicators reveals several interesting features. The smallest clusters with n= 8 and 10, do not show any signature of melting transition. With the increase in size, broad peak in the specific heat is developed, which alternately for larger clusters evolves into a sharper one, indicating a solidlike to liquidlike transition. The melting temperatures show irregular pattern similar to experimentally observed one for larger clusters [ M. Schmidt et al., Nature (London) 393, 238 (1998) ]. The present calculations also reveal a remarkable size-sensitive effect in the size range of n= 40 to 55. While Na_40 and Na_55 show well developed peaks in the specific heat curve, Na_50 cluster exhibits a rather broad peak, indicating a poorly-defined melting transition. Such a feature has been experimentally observed for gallium and aluminum clusters [ G. A. Breaux et al., J. Am. Chem. Soc. 126, 8628 (2004); G. A.Breaux et al., Phys. Rev. Lett. 94, 173401 (2005) ].Comment: 8 pages, 11 figure

    Water activities in the Kerala Khondalite Belt

    Get PDF
    The author and colleagues presented their determinations of water activities in various granulite-facies rocks of the Kerala Khondalite Belt. Using mineral equilibria, thermodynamic data, and assumed geopressure-geotemperature conditions of 5.5 kbar and 750 C, they calculated uniformly low a(H2O) values of about 0.27 over a large geographic region. They suggested that these conditions were produced by the presence of abundant CO2-rich fluids, derived either from deeper levels or from metamorphic reactions involving graphite

    Supersymmetry in Slow Motion

    Full text link
    We construct new theories of electroweak symmetry breaking that employ a combination of supersymmetry and discrete symmetries to stabilize the weak scale up to and beyond the energies probed by the LHC. These models exhibit conventional supersymmetric spectra but the fermion-sfermion-gaugino vertices are absent. This closes many conventional decay channels, thereby allowing several superpartners to be stable on collider time scales. This opens the door to the possibility of directly observing R-hadrons and three flavors of sleptons inside the LHC detectors.Comment: A reference added. The discussion on the Higgs sector expanded. The version accepted for publication in JHE

    Implications on SUSY breaking mediation mechanisms from observing Bsμ+μB_s \to \mu^+ \mu^- and the muon (g2)(g-2)

    Full text link
    We consider Bsμ+μB_s \to \mu^+ \mu^- and the muon (g2)μ(g-2)_\mu in various SUSY breaking mediation mechanisms. If the decay Bsμ+μB_s \to \mu^+ \mu^- is observed at Tevatron Run II with a branching ratio larger than 2×108\sim 2 \times 10^{-8} , the noscale supergravity (including the gaugino mediation), the gauge mediation scenario with small number of messenger fields and low messenger scale, and a class of anomaly mediation scenarios will be excluded, even if they can accommodate a large muon (g2)μ(g-2)_\mu. On the other hand, the minimal supergravity scenario and similar mechanisms derived from string models can accommodate this observation.Comment: 4 pages, 3 figure

    Natural Little Hierarchy from a Partially Goldstone Twin Higgs

    Full text link
    We construct a simple theory in which the fine-tuning of the standard model is significantly reduced. Radiative corrections to the quadratic part of the scalar potential are constrained to be symmetric under a global U(4) x U(4)' symmetry due to a discrete Z_2 "twin" parity, while the quartic part does not possess this symmetry. As a consequence, when the global symmetry is broken the Higgs fields emerge as light pseudo-Goldstone bosons, but with sizable quartic self-interactions. This structure allows the cutoff scale, \Lambda, to be raised to the multi-TeV region without significant fine-tuning. In the minimal version of the theory, the amount of fine-tuning is about 15% for \Lambda = 5 TeV, while it is about 30% in an extended model. This provides a solution to the little hierarchy problem. In the minimal model, the "visible" particle content is exactly that of the two Higgs doublet standard model, while the extended model also contains extra vector-like fermions with masses ~(1-2)TeV. At the LHC, our minimal model may appear exactly as the two Higgs doublet standard model, and new physics responsible for cutting off the divergences of the Higgs mass-squared parameter may not be discovered. Several possible processes that may be used to discriminate our model from the simple two Higgs doublet model are discussed for the LHC and for a linear collider.Comment: 22 page

    Two-dimensional colloidal fluids exhibiting pattern formation

    Get PDF
    Fluids with competing short range attraction and long range repulsive interactions between the particles can exhibit a variety of microphase separated structures. We develop a lattice-gas (generalised Ising) model and analyse the phase diagram using Monte Carlo computer simulations and also with density functional theory (DFT). The DFT predictions for the structures formed are in good agreement with the results from the simulations, which occur in the portion of the phase diagram where the theory predicts the uniform fluid to be linearly unstable. However, the mean-field DFT does not correctly describe the transitions between the different morphologies, which the simulations show to be analogous to micelle formation. We determine how the heat capacity varies as the model parameters are changed. There are peaks in the heat capacity at state points where the morphology changes occur. We also map the lattice model onto a continuum DFT that facilitates a simplification of the stability analysis of the uniform fluid.Comment: 13 pages, 15 figure

    Large Extra Dimensions from a Small Extra Dimension

    Get PDF
    Models with extra dimensions have changed our understanding of the hierarchy problem. In general, these models explain the weakness of gravity by diluting gravity in a large bulk volume, or by localizing the graviton away from the standard model. In this paper, we show that the warped geometries necessary for the latter scenario can naturally induce the large volumes necessary for the former. We present a model in which a large volume is stabilized without supersymmetry. We comment on the phenomenology of this scenario and generalizations to additional dimensions.Comment: Some formulae altered, conclusions unchange
    corecore