9,287 research outputs found

    High accuracy transportable selectable-Value High Dc Voltage Standard

    Get PDF
    À l'Institut national de recherche metrologique (INRIM) il a été développé un étalon de haute tension continue avec des valeurs sélectionnables de 10 V à 100 V pour compenser le manque d'étalons de haut niveau de tension continue d'une valeur supérieure à 10 V pour les comparaisons interlaboratoires de haut niveau. Il a été utilisé une nouvelle technique électronique de terre mobile. L'étalon développé a un bruit inférieur et il a la stabilité égal à celle des calibrateurs de tension continue ou multifonction de haut niveau largement utilisé dans les laboratoires d'étalonnage électriques; il a aussi une meilleure attitude à être transporté pour les comparaisons interlaboratoires. Le projet est extensible jusqu'à 1000 V

    A Soil Management Assessment Framework (SMAF) Evaluation of Brazilian Sugarcane Expansion on Soil Quality

    Get PDF
    The Soil Management Assessment Framework (SMAF) was developed to evaluate impacts of land use and management practices on soil quality (SQ), but its suitability for Brazilian tropical soils was unknown. We hypothesized that SMAF would be sensitive enough to detect SQ changes associated with sugarcane (Saccharum officinarum L.) expansion for ethanol production. Field studies were performed at three sites across the south-central region of Brazil, aiming to quantify the impacts of a land use change sequence (i.e., native vegetation–pasture–sugarcane) on SQ. Eight soil indicators were individually scored using SMAF curves developed primarily for North American soils and integrated into an overall Soil Quality Index (SQI) and its chemical, physical, and biological sectors. The SMAF scores were correlated with two other approaches used to assess SQ changes, soil organic C (SOC) stocks and Visual Evaluation of Soil Structure (VESS) scores. Our findings showed that the SMAF was an efficient tool for assessing land use change effects on the SQ of Brazilian tropical soils. The SMAF scoring curves developed using robust algorithms allowed proper assignment of scores for the soil chemical, physical, and biological indicators assessed. The SQI scores were significantly correlated with SOC stocks and VESS scores. Long-term transition from native vegetation to extensive pasture promoted significant decreases in soil chemical, physical, and biological indicators. Overall SQI suggested that soils under native vegetation were functioning at 87% of their potential capacity, while pasture soils were functioning at 70%. Conversions of pasture to sugarcane induced slight improvements in SQ, primarily because of improved soil fertility. Sugarcane soils are functioning at 74% of their potential capacity. Based on this study, management strategies were developed to improve SQ and the sustainability of sugarcane production in Brazil

    N2O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil.

    Get PDF
    Among the main greenhouse gases (CO2, CH4 and N2O), N2O has the highest global warming potential. N2O emission is mainly connected to agricultural activities, increasing as nitrogen concentrations increase in the soil with nitrogen fertilizer application. We evaluated N2O emissions due to application of increasing doses of ammonium nitrate and urea in two sugarcane fields in the mid-southern region of Brazil: Piracicaba (São Paulo state) and Goianésia (Goiás state). In Piracicaba, N2O emissions exponentially increased with increasing N doses and were similar for urea and ammonium nitrate up to a dose of 107.9 kg ha-1 of N. From there on, emissions nexponentially increased for ammonium nitrate, whereas for urea they stabilized. In Goianésia, N2O emissions nwere lower, although the behavior was similar to that at the Piracicaba site. Ammonium nitrate emissions increased linearly with N dose and urea emissions were adjusted to a quadratic equation with a maximum amount of 113.9 kg N ha-1. This first effort to measure fertilizer induced emissions in Brazilian sugarcane production not only helps to elucidate the behavior of N2O emissions promoted by different N sources frequently used in Brazilian sugarcane fields but also can be useful for future Brazilian ethanol carbon footprint studies

    Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at √s = 8TeV with the ATLAS detector

    Get PDF
    Searches for the electroweak production of charginos, neutralinos and sleptons in final states characterized by the presence of two leptons (electrons and muons) and missing transverse momentum are performed using 20.3 fb−1 of proton-proton collision data at s√ = 8 TeV recorded with the ATLAS experiment at the Large Hadron Collider. No significant excess beyond Standard Model expectations is observed. Limits are set on the masses of the lightest chargino, next-to-lightest neutralino and sleptons for different lightest-neutralino mass hypotheses in simplified models. Results are also interpreted in various scenarios of the phenomenological Minimal Supersymmetric Standard Model

    The Economically Important Nitrogen Pathways of Southwest Florida

    Get PDF
    The global phenomenon of burgeoning coastal population growth has led to coastal watershed landscape transformation and ecosystem degradation, prompting policy-makers to set limits on freshwater withdrawals and labile nutrient loads. Important components of Florida’s economies lie in the state’s expansive coastal zone; the organisms driving the billion-dollar recreational fishing industry are rooted in coastal habitats, while the agriculture and real-estate industries sprawl throughout numerous coastal watersheds. This study aimed to identify the connections between anthropogenic land use and essential juvenile fish nursery habitats within the coastal zone, which is the first critical step for sustaining the ecology and related economies of the region. The need for this study arises from the fact that these economies are interconnected through nitrogen, and therefore nitrogen management can influence their prosperity or collapse. Juvenile fish nursery habitats are located in waters that receive nitrogen from adjacent landscapes. Runoff delivers nitrogen derived from human nitrogen use and processing within the watersheds to the juvenile fish nursery habitats. Ecosystem managers must understand that although copious amounts of nitrogen applied to land may ultimately support nursery habitat foodwebs, overwhelming nitrogen loads may also create algal blooms that decay and cause lethal hypoxic events leading to ecosystem degradation. This study aims to pinpoint the specific nitrogen sources that support primary production and ultimately fish production in watersheds dominated by agricultural landscapes and residential neighborhoods. Stable isotopes are versatile tools used to identify these connections. The nitrogen and carbon compounds that make up the moieties of an ecosystem inherently carry information on major nitrogen sources, trophic structure as well as the crucial information concerning dominant nitrogen removal and transformative processes that occur within sediments. Specifically in this study, the stable isotopes of carbon and nitrogen of dissolved inorganic nitrogen, primary producers, and fish were used to identify 1) the connections between urban and agricultural landscapes and the nutrients that percolate through the foodweb, 2) the primary producers that support fish biomass, 3) the origins of sedimentary organic matter that can provide new nitrogen via recycling, and 4) the heterogeneous function of fish nursery habitats in polluted systems. This study was conducted during the region’s wet and dry seasons and in over thirty watersheds that differ from each other in terms of size and anthropogenic influence. In agricultural watersheds, nitrogen derived from row crops and tree crops ultimately supported fish production during the wet season. Convective afternoon thunderstorms coupled with runoff delivered nitrogen from the landscape to receiving waters. These nutrients supported phytoplankton which deposited into the sediments and supported benthic foodwebs. During the dry season, nitrogen derived from row crops and nitrogen transformation in the sediments ultimately supported fish production. In this case, irrigation water used for agriculture delivered nitrogen from lands covered with row crops to the nursery habitats in receiving waters. The dry season was characterized by the nitrogen transformation process known as dissimilatory nitrogen reduction to ammonium (DNRA), where biologically available nitrate is converted to biologically available ammonium. Phytoplankton deposits, most likely delivered during the wet season, were recycled through the slow burning DNRA processes, which provided nitrogen for the benthic microalgae that dominated in the dry season. These organisms in turn supported benthic communities which ultimately supported dry season fish production.  In small urban watersheds, nitrogen derived from septic tanks, lawn irrigation, leaky sewage pipes, and atmospheric deposition ultimately supported fish production via phytoplankton, but unlike the nitrogen sources in agricultural watersheds, these sources (with the exception of atmospheric deposition) were seasonally consistent because a mechanisms to deliver nitrogen derived from septic tanks, lawn fertilizer, and leaky sewage pipes were, at least to some extent, available during both seasons. In polluted, tidal, fish-nursery habitats, the specific mechanism that allowed nursery habitats to decrease the ratio of mortality over growth rates of juvenile fish was not consistent among systems. These mechanisms were likely dependent on physical-chemical parameters and stream geomorphology. If the geomorphology or physical-chemical characteristics of nursery habitats are not adequate to set up an efficient nitrogen transfer process to fish, these habitats become more of a haven from predators rather than a source of food for fish.  This study has several implications for management. Managers must first recognize that microalgae are dominant supporters of tidal nursery foodwebs. Managers must define the relationship between nitrogen loads and fish abundance. If this relationship is unknown, the results of increasing nitrogen loads on fish production will remain uncertain; foodwebs in nursery habitats may collapse due to eutrophication, or fish abundance may increase due to increases in food supply. Connectivity factors derived from stable isotope mechanistic mass-balance models can be used as measurable targets for groups of watersheds. The use of wetlands as nitrogen remediation tools may not be effective at removing nitrogen; nitrogen transformation processes such as DNRA likely outweigh removal processes in wetland soils

    The encaged lung: rapidly progressive idiopathic pleurisy.

    Get PDF
    Here we present a case of an idiopathic fibrinous pleurisy affecting a 56-year old non-smoker male that has shown a rapidly progressive course. With a brief review of the literature we discuss the absence of any identified cause of pleurisy as a relatively common condition, requiring attention and clinical awareness

    Nonlinear evolution of the magnetized Kelvin-Helmholtz instability: from fluid to kinetic modeling

    Full text link
    The nonlinear evolution of collisionless plasmas is typically a multi-scale process where the energy is injected at large, fluid scales and dissipated at small, kinetic scales. Accurately modelling the global evolution requires to take into account the main micro-scale physical processes of interest. This is why comparison of different plasma models is today an imperative task aiming at understanding cross-scale processes in plasmas. We report here the first comparative study of the evolution of a magnetized shear flow, through a variety of different plasma models by using magnetohydrodynamic, Hall-MHD, two-fluid, hybrid kinetic and full kinetic codes. Kinetic relaxation effects are discussed to emphasize the need for kinetic equilibriums to study the dynamics of collisionless plasmas in non trivial configurations. Discrepancies between models are studied both in the linear and in the nonlinear regime of the magnetized Kelvin-Helmholtz instability, to highlight the effects of small scale processes on the nonlinear evolution of collisionless plasmas. We illustrate how the evolution of a magnetized shear flow depends on the relative orientation of the fluid vorticity with respect to the magnetic field direction during the linear evolution when kinetic effects are taken into account. Even if we found that small scale processes differ between the different models, we show that the feedback from small, kinetic scales to large, fluid scales is negligable in the nonlinear regime. This study show that the kinetic modeling validates the use of a fluid approach at large scales, which encourages the development and use of fluid codes to study the nonlinear evolution of magnetized fluid flows, even in the colisionless regime

    Evidence for WW production from double-parton interactions in proton–proton collisions at √s = 13 TeV

    Get PDF
    A search for WW production from double-parton scattering processes using same-charge electron-muon and dimuon events is reported, based on proton-proton collision data collected at a center-of-mass energy of 13 TeV. The analyzed data set corresponds to an integrated luminosity of 77.4fb⁻¹, collected using the CMS detector at the LHC in 2016 and 2017. Multivariate classifiers are used to discriminate between the signal and the dominant background processes. A maximum likelihood fit is performed to extract the signal cross section. This leads to the first evidence for WW production via double-parton scattering, with a significance of 3.9 standard deviations. The measured inclusive cross section is 1.41±0.28(stat)±0.28(syst)pb
    corecore