49 research outputs found

    Epilepsy and inborn errors of metabolism in adults: The diagnostic odyssey of a young woman with medium-chain acyl-coenzyme A dehydrogenase deficiency

    Get PDF
    We describe a case of epileptic encephalopathy in a young woman with undiagnosed medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD), who presented with an early-onset focal motor status epilepticus (SE) then followed by permanent left hemiplegia and drug-resistant epilepsy with neurodevelopmental delay. Throughout her clinical history, recurrent episodes of lethargy, feeding difficulties, and clustering seizures occurred, progressing into a super refractory SE and death at the age of 25 years. Although epilepsy is not a distinctive feature of MCADD, we advise considering this metabolic disease as a possible etiology of epileptic encephalopathy and hemiconvulsion-hemiplegia-epilepsy syndrome of unknown origin, on the chance to provide a timely and targeted treatment preventing development delay and evolution to SE. Adult patients with epilepsy of unknown etiology not screened at birth for inborn errors of metabolism, such as MCADD, should be promptly investigated for these treatable conditions

    A novel application of capnography during controlled human exposure to air pollution

    Get PDF
    BACKGROUND: The objective was to determine the repeatability and stability of capnography interfaced with human exposure facility. METHODS: Capnographic wave signals were obtained from five healthy volunteers exposed to particle-free, filtered air during two consecutive 5 min intervals, 10 min apart, within the open and then the sealed and operational human exposure facility (HEF). Using a customized setup comprised of the Oridion Microcap(® )portable capnograph, DA converter and AD card, the signal was acquired and saved as an ASCII file for subsequent processing. The minute ventilation (VE), respiratory rate (RR) and expiratory tidal volume (V(TE)) were recorded before and after capnographic recording and then averaged. Each capnographic tracing was analyzed for acceptable waves. From each recorded interval, 8 to 19 acceptable waves were selected and measured. The following wave parameters were obtained: total length and length of phase II and III, slope of phase II and III, area under the curve and area under phase III. In addition, we recorded signal measures including the mean, standard deviation, mode, minimum, maximum – which equals end-tidal CO(2 )(EtCO(2)), zero-corrected maximum and true RMS. RESULTS: Statistical analysis using a paired t-test for means showed no statistically significant changes of any wave parameters and wave signal measures, corrected for RR and V(TE), comparing the measures when the HEF was open vs. sealed and operational. The coefficients of variation of the zero-corrected and uncorrected EtCO(2), phase II absolute difference, signal mean, standard deviation and RMS were less than 10% despite a sub-atmospheric barometric pressure, and slightly higher temperature and relative humidity within the HEF when operational. CONCLUSION: We showed that a customized setup for the acquisition and processing of the capnographic wave signal, interfaced with HEF was stable and repeatable. Thus, we expect that analysis of capnographic waves in controlled human air pollution exposure studies is a feasible tool for characterization of cardio-pulmonary effects of such exposures

    Critical behavior in interdependent spatial spreading processes with distinct characteristic time scales

    No full text
    The spread of an infectious disease is well approximated by metapopulation networks connected by human mobility flow and upon which an epidemiological model is defined. In order to account for travel restrictions or cancellation we introduce a model with a parameter that explicitly indicates the ratio between the time scales of the intervening processes. We study the critical properties of the epidemic process and its dependence on such a parameter. We find that the critical threshold separating the absorbing state from the active state depends on the scale parameter and exhibits a critical behavior itself: a metacritical point – a critical value in the curve of critical points – reflected in the behavior of the attack rate measured for a wide range of empirical metapopulation systems. Our results have potential policy implications, since they establish a non-trivial critical behavior between temporal scales of reaction (epidemic spread) and diffusion (human mobility) processes

    The voice of few, the opinions of many: Evidence of social biases in Twitter COVID-19 fake news sharing

    No full text
    Online platforms play a relevant role in the creation and diffusion of false or misleading news. Concerningly, the COVID-19 pandemic is shaping a communication network which reflects the emergence of collective attention towards a topic that rapidly gained universal interest. Here, we characterize the dynamics of this network on Twitter, analysing how unreliable content distributes among its users. We find that a minority of accounts is responsible for the majority of the misinformation circulating online, and identify two categories of users: a few active ones, playing the role of 'creators', and a majority playing the role of 'consumers'. The relative proportion of these groups (approx. 14% creators - 86% consumers) appears stable over time: consumers are mostly exposed to the opinions of a vocal minority of creators (which are the origin of 82% of fake content in our data), that could be mistakenly understood as representative of the majority of users. The corresponding pressure from a perceived majority is identified as a potential driver of the ongoing COVID-19 infodemic

    The influence of slope-angle ratio on the dynamics of granular flows: insights from laboratory experiments

    No full text
    Laboratory experiments on granular flows using natural material were carried out in order to investigate the behaviour of granular flows passing over a break in slope. Sensors in the depositional area recorded the flow kinematics, while video footage permitted reconstruction of the deposit formation, which allowed investigation of the deposit shape as a function of the change in slope. We defined the slope-angle ratio as the proportion between slope angle in the depositional area and that of the channel. When the granular flow encounters the break in slope part of the flow front forms a bouncing clast zone due to elastic impact with the expansion box floor. During this process, part of the kinetic energy of the dense granular flow is transferred to elutriating fine ash, which subsequently forms turbulent ash cloud accompanying the granular flow until it comes to rest. Morphometric analysis of the deposits shows that they are all elliptical, with an almost constant minor axis and a variable major axis. The almost constant value of the minor axis relates to the spreading angle of flow at the end of the channel, which resembles the basal friction angle of the material. The variation of the major axis is interpreted to relate to the effect of competing inertial and frictional forces. This effect also reflects the partitioning of centripetal and tangential velocities, which changes as the flow passes over the break in slope. After normalization, morphometric data provided empirical relationships that highlight the dependence of runout from the product of slope-angle ratio and the difference in height between granular material release and deposit. The empirical relationships were tested against the runouts of hot avalanches formed during the 1944 ad eruption at Vesuvius, with differences among actual and calculated values are between 1.7 and 15 %. Velocity measurements of laboratory granular flows record deceleration paths at different breaks in slope. When normalized, the velocity data show third-order polynomial fit, highlighting a complex behaviour involving interplay between inertial and frictional forces. The theoretical velocity decays were tested against the data published for volcaniclastic debris flows of the 5–6 May 1998 event in the Sarno area. The comparison is very good for non-channelized debris flows, with significant differences between actual and calculated velocities for the channelized debris flows

    Analisi delle tendenze di lungo termine nel regime degli afflussi meteorici e dei deflussi dell’Adda a Lecco (1845-2014) = Long term rainfall and runoff trends of the Adda river in Lecco (1845-2014)

    No full text
    La consultazione di dati di archivio, poco conosciuti, relativi all\u2019idrometro del Fortilizio di Lecco ha permesso la ricostruzione dei livelli idrometrici e dei deflussi giornalieri dall\u2019incile del Lago di Como dal 1845 al 2014. Analogamente sono stati stimati gli afflussi meteorici mensili nel medesimo periodo rendendo quindi possibile un confronto tra le tendenze climatiche di lungo termine che mostrano, applicando i test statistici di Mann-Kendall, Spearman e Theil-Sen, una diminuzione degli afflussi meteorici e, in misura pi\uf9 marcata, dei deflussi. La disponibilit\ue0 di una delle serie idrometriche e meteorologiche tra le pi\uf9 lunghe disponibili per i bacini italiani permetter\ue0 una analisi delle possibili cause di natura climatica e/o antropica delle variazioni del regime dei deflussi.A recovery of ancient records of the Como Lake water levels at the Fortilizio in Lecco hydrometric station enabled the reconstruction of a time series of daily water level and runoff from the Como Lake spanning the 1845-2014 period. In parallel, the monthly areal precipitation within the Adda river catchment was estimated for the same 170 years-long period. A comparison of the two series applying the Mann-Kendall, Spearman and Theil-Sen trend tests, shows a decline, in the long term, of precipitation and, especially, of runoff. The presented time series, which is one of the longest available for Italian riverbasins, will support analyses of climatic/anthropogenic reasons of changes in the runoff regime
    corecore