40 research outputs found
Optimality Clue for Graph Coloring Problem
In this paper, we present a new approach which qualifies or not a solution
found by a heuristic as a potential optimal solution. Our approach is based on
the following observation: for a minimization problem, the number of admissible
solutions decreases with the value of the objective function. For the Graph
Coloring Problem (GCP), we confirm this observation and present a new way to
prove optimality. This proof is based on the counting of the number of
different k-colorings and the number of independent sets of a given graph G.
Exact solutions counting problems are difficult problems (\#P-complete).
However, we show that, using only randomized heuristics, it is possible to
define an estimation of the upper bound of the number of k-colorings. This
estimate has been calibrated on a large benchmark of graph instances for which
the exact number of optimal k-colorings is known. Our approach, called
optimality clue, build a sample of k-colorings of a given graph by running many
times one randomized heuristic on the same graph instance. We use the
evolutionary algorithm HEAD [Moalic et Gondran, 2018], which is one of the most
efficient heuristic for GCP. Optimality clue matches with the standard
definition of optimality on a wide number of instances of DIMACS and RBCII
benchmarks where the optimality is known. Then, we show the clue of optimality
for another set of graph instances. Optimality Metaheuristics Near-optimal
Network conduciveness with application to the graph-coloring and independent-set optimization transitions
We introduce the notion of a network's conduciveness, a probabilistically
interpretable measure of how the network's structure allows it to be conducive
to roaming agents, in certain conditions, from one portion of the network to
another. We exemplify its use through an application to the two problems in
combinatorial optimization that, given an undirected graph, ask that its
so-called chromatic and independence numbers be found. Though NP-hard, when
solved on sequences of expanding random graphs there appear marked transitions
at which optimal solutions can be obtained substantially more easily than right
before them. We demonstrate that these phenomena can be understood by resorting
to the network that represents the solution space of the problems for each
graph and examining its conduciveness between the non-optimal solutions and the
optimal ones. At the said transitions, this network becomes strikingly more
conducive in the direction of the optimal solutions than it was just before
them, while at the same time becoming less conducive in the opposite direction.
We believe that, besides becoming useful also in other areas in which network
theory has a role to play, network conduciveness may become instrumental in
helping clarify further issues related to NP-hardness that remain poorly
understood
A practical exact maximum compatibility algorithm for reconstruction of recent evolutionary history
On Maximum Weight Clique Algorithms, and How They Are Evaluated
Maximum weight clique and maximum weight independent set solvers are often benchmarked using maximum clique problem instances, with weights allocated to vertices by taking the vertex number mod 200 plus 1. For constraint programming approaches, this rule has clear implications, favouring weight-based rather than degree-based heuristics. We show that similar implications hold for dedicated algorithms, and that additionally, weight distributions affect whether certain inference rules are cost-effective. We look at other families of benchmark instances for the maximum weight clique problem, coming from winner determination problems, graph colouring, and error-correcting codes, and introduce two new families of instances, based upon kidney exchange and the Research Excellence Framework. In each case the weights carry much more interesting structure, and do not in any way resemble the 200 rule. We make these instances available in the hopes of improving the quality of future experiments
Comparison of Multiple Spacecraft Configuration Designs for Coordinated Flight Missions
Coordinated flight allows the replacement of a single monolithic spacecraft with multiple smaller ones, based on the idea of distributed systems. According to the mission objectives and in order to ensure a safe relative motion, constraints on the relative distances need to be satisfied.
At first a proper orbit design can limit the differential perturbations, then through corrective maneuvers their induced differential drifts can be canceled. In this work several designs are surveyed, defining the initial configuration of a group of spacecraft while counteracting the differential perturbations. For each of the investigated designs the focus is on the number of deployable spacecraft and on the possibility to ensure safe relative motion through station keeping of the initial configuration, with particular attention to the required budget and the constraints violations
An Extended Comparison of the Best Known Algorithms for Finding the Unweighted Maximum Clique
Simple and Fast: Improving a Branch-and-Bound Algorithm for Maximum Clique
We consider a branch-and-bound algorithm for maximum clique problems
