40 research outputs found

    Optimality Clue for Graph Coloring Problem

    Full text link
    In this paper, we present a new approach which qualifies or not a solution found by a heuristic as a potential optimal solution. Our approach is based on the following observation: for a minimization problem, the number of admissible solutions decreases with the value of the objective function. For the Graph Coloring Problem (GCP), we confirm this observation and present a new way to prove optimality. This proof is based on the counting of the number of different k-colorings and the number of independent sets of a given graph G. Exact solutions counting problems are difficult problems (\#P-complete). However, we show that, using only randomized heuristics, it is possible to define an estimation of the upper bound of the number of k-colorings. This estimate has been calibrated on a large benchmark of graph instances for which the exact number of optimal k-colorings is known. Our approach, called optimality clue, build a sample of k-colorings of a given graph by running many times one randomized heuristic on the same graph instance. We use the evolutionary algorithm HEAD [Moalic et Gondran, 2018], which is one of the most efficient heuristic for GCP. Optimality clue matches with the standard definition of optimality on a wide number of instances of DIMACS and RBCII benchmarks where the optimality is known. Then, we show the clue of optimality for another set of graph instances. Optimality Metaheuristics Near-optimal

    Network conduciveness with application to the graph-coloring and independent-set optimization transitions

    Full text link
    We introduce the notion of a network's conduciveness, a probabilistically interpretable measure of how the network's structure allows it to be conducive to roaming agents, in certain conditions, from one portion of the network to another. We exemplify its use through an application to the two problems in combinatorial optimization that, given an undirected graph, ask that its so-called chromatic and independence numbers be found. Though NP-hard, when solved on sequences of expanding random graphs there appear marked transitions at which optimal solutions can be obtained substantially more easily than right before them. We demonstrate that these phenomena can be understood by resorting to the network that represents the solution space of the problems for each graph and examining its conduciveness between the non-optimal solutions and the optimal ones. At the said transitions, this network becomes strikingly more conducive in the direction of the optimal solutions than it was just before them, while at the same time becoming less conducive in the opposite direction. We believe that, besides becoming useful also in other areas in which network theory has a role to play, network conduciveness may become instrumental in helping clarify further issues related to NP-hardness that remain poorly understood

    On Maximum Weight Clique Algorithms, and How They Are Evaluated

    Get PDF
    Maximum weight clique and maximum weight independent set solvers are often benchmarked using maximum clique problem instances, with weights allocated to vertices by taking the vertex number mod 200 plus 1. For constraint programming approaches, this rule has clear implications, favouring weight-based rather than degree-based heuristics. We show that similar implications hold for dedicated algorithms, and that additionally, weight distributions affect whether certain inference rules are cost-effective. We look at other families of benchmark instances for the maximum weight clique problem, coming from winner determination problems, graph colouring, and error-correcting codes, and introduce two new families of instances, based upon kidney exchange and the Research Excellence Framework. In each case the weights carry much more interesting structure, and do not in any way resemble the 200 rule. We make these instances available in the hopes of improving the quality of future experiments

    Comparison of Multiple Spacecraft Configuration Designs for Coordinated Flight Missions

    Get PDF
    Coordinated flight allows the replacement of a single monolithic spacecraft with multiple smaller ones, based on the idea of distributed systems. According to the mission objectives and in order to ensure a safe relative motion, constraints on the relative distances need to be satisfied. At first a proper orbit design can limit the differential perturbations, then through corrective maneuvers their induced differential drifts can be canceled. In this work several designs are surveyed, defining the initial configuration of a group of spacecraft while counteracting the differential perturbations. For each of the investigated designs the focus is on the number of deployable spacecraft and on the possibility to ensure safe relative motion through station keeping of the initial configuration, with particular attention to the required ΔV\Delta V budget and the constraints violations

    Maximum Clique Exhaustive Search in Circulant k-Hypergraphs

    No full text

    Reversed Search Maximum Clique Algorithm Based on Recoloring

    No full text

    Simple and Fast: Improving a Branch-and-Bound Algorithm for Maximum Clique

    No full text
    We consider a branch-and-bound algorithm for maximum clique problems
    corecore