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Abstract Coordinated flight allows the replacement of a single monolithic space-
craft with multiple smaller ones, based on the idea of distributed systems. According
to the mission objectives and in order to ensure a safe relative motion, constraints
on the relative distances need to be satisfied. At first a proper orbit design can limit
the differential perturbations, then through corrective maneuvers their induced dif-
ferential drifts can be canceled. In this work several designs are surveyed, defining
the initial configuration of a group of spacecraft while counteracting the differential
perturbations. For each of the investigated designs the focus is on the number of
deployable spacecraft and on the possibility to ensure safe relative motion through
station keeping of the initial configuration, with particular attention to the required
∆V budget and the constraints violations.

1 Introduction

In recent years the interest in spacecraft coordinated flight increased more and more
due to the numerous potential advantages associated with the replacement of a single
monolithic object with several smaller ones. A group of small spacecraft working
together could enhance scientific observations, augment flexibility and redundancy,
reduce costs and risks and overcome physical limitations. At the same time though,
new challenges are introduced concerning for example the sharing of data, the com-
munication and the relative motion among the objects. Focusing on this last aspect,
it is trivial that when multiple objects are considered, much attention must be paid
on the way they move w.r.t. each other. Constraints might be applied to ensure a
safe relative motion and according to their strictness the two branches of formation
flight and cluster flight can be distinguished. Due to many technical limitations the
spread of the two architectures did not evolve in the same way, up to the point that
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formations are being largely studied and successfully implemented, while clusters
are nowadays still under investigation.

In a formation of satellites the relative configuration is fixed and control actions
are required to maintain it. In a typical mission scenario several sensors and instru-
ments demand for tight relative positions to cooperate, but cannot be allocated on
the same spacecraft because the required relative distances are too wide and the re-
sulting spacecraft exceeds the launch vehicle capabilities. To cope with this issue
the devices can be distributed on different spacecraft which fly together while guar-
anteeing the satisfaction of the relative distances requirements through the use of
control actions. Examples of missions implementing the formation flight concept
can be found in TanDEM-X [20], PRISMA [21] and GRACE [26].

In the case of a cluster instead there is no need for precise geometry, because
the successful outcome of the mission does not strictly depend on specific rela-
tive configuration as in the formation flight case. As long as the distances among the
spacecraft are held within a maximum and a minimum value to ensure inter-modules
communication and avoid collisions, respectively, no control action is required. It
all results in less strict relative motion requirements, with a consequent relaxed in-
tervention from the control system. In a typical scenario each member of the cluster
allocates a different functionality, like communications, data storage, power genera-
tion, etc. and all the functionalities are shared through wireless connections. Exam-
ples for potential application of the cluster flight can be identified in the missions
PLEIADES [15] and SAMSON [13].

In the design of a coordinated spacecraft based-mission an extremely important
task is the definition of the initial configuration, since the application of proper
constraints on the relative states will impress a particular desired behaviour to the
evolution of the relative motion. Over time corrective maneuvers are required to
counteract the changes in the initial relative geometry deriving from the differen-
tial perturbations. Therefore, to limit the required fuel and the missions costs, it is
highly desirable to have orbits that naturally satisfy the relative motion constraints.
Over the years many authors worked on the development and improvement of math-
ematical models to easily grasp the evolution of the relative motion and simplify the
application of the required constraints (see e.g., [14, 6, 27, 5, 25, 29, 17, 16]).

Once the initial configuration is defined and the spacecraft are deployed, a station
keeping approach could be used to cancel the drifts induced by the differential per-
turbations. Indeed the initial states ensure satisfaction of the distance constraints and
can be seen as reference states to be tracked. This approach is certainly meaningful
in a formation, where the relative geometry constraints limit considerably the tol-
erable differential drifts. Less clear is instead the benefit of cluster keeping through
station keeping. In this case the loose constraints involve that the distance bound-
aries are infrequently violated and when this happens the drift from the reference
state could be so large that the recomputation of a new reference state could become
more meaningful than the station keeping of the old one. The goal of this work is to
evaluate if and how much the station keeping logic could be beneficial for coordi-
nated flight missions characterized by a different number of spacecraft and different
distance boundaries. To study and implement the station keeping logic, it can be
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advantageous expressing the relative motion through relative orbital elements, since
the orbital elements have a slow variation over time and corrections of specific el-
ements with theoretically no effect on the others can be obtained using impulsive
control (see e.g., [25, 24, 23, 18, 3, 22, 12]).

According to the type of constraints initially imposed, various initial configura-
tions can be found, differing from each other for the number of deployable space-
craft, their relative geometry and the effort, in terms of ∆V , they require for station
keeping. A survey and comparison of such initial configurations is the topic of this
work, which is organized as follows. Section 2 introduces the problem and the tech-
niques used to define the initial states of a group of spacecraft. Section 3 describes
how the comparison has been set and the key parameters used. The results of the
study are then presented in Section 4, while Section 5 reports the final conclusions.

2 Problem Statement

The successful outcome of a coordinated flight-based mission strictly depends on
the relative motion among the involved spacecraft and to ensure satisfaction of rela-
tive motion constraints, much attention must be put on the control actions and on the
counteraction of the differential perturbations. To reduce the fuel expenditure spe-
cific constraints can be imposed in the definition of the initial conditions, according
to the desired behavior required by the mission goals.

From the literature research it emerged that several techniques to define the rela-
tive initial conditions of a group of satellites are available, hence it has been decided
to examine and compare them to see if and how the computed initial conditions
could be used for the deployment of a cluster of objects.

The techniques for the initial conditions (TIC) that have been studied are in-
troduced in the upcoming sections but at first, in order to make their comparison
meaningful, a common test setup is identified: it is supposed that the cluster is cen-
tered in a virtual point (VP) and it is assumed that minimum distance constraints
(MinDC) as well as maximum distance constraints (MaxDC) are in place. In par-
ticular, to prevent collisions a minimum distance Dmin must be guaranteed between
any pair of spacecraft, while escaping drifts are avoided through upper bounding the
distance of a spacecraft from the VP by a maximum value Dmax. Denoting with ds
and dr the generic distances between any two spacecraft of the cluster and between
a spacecraft and the VP, respectively, the MinDC and the MaxDC are given by:

ds > Dmin (1a)
dr < Dmax. (1b)

The VP is supposed to move on a low Earth orbit (LEO) and its initial state is defined
in Table 1 in terms of osculating keplerian elements œK

VP(t0) = (a e i ω Ω M)T .
The description of each technique is structured in two parts. At first the basic

logic is introduced while using the simple chief-deputy framework. The chief is the
VP and the state of the deputy is defined such that their relative distance is bounded
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Table 1 Initial state of the virtual point.

Element Value Units

semimajor axis - a 7000.92 km
eccentricity - e 0.01
inclination - i 50.99 deg

right ascension of the ascending node - Ω 11.48 deg
argument of perigee - ω 19.12 deg

mean anomaly - M 21.00 deg

by Dmin and Dmax. Afterwards, it is shown how that same logic can be adapted to
configure a cluster of nm modules while also maximizing nm. As a matter of fact for
the case of a cluster the simple chief-deputy approach does not fit very well as it is,
and for several reasons. In the first place, from the stated assumptions it is clear that
there is no need to lower bound the distances dr and to upper bound the distances
ds. Secondly, when several modules are placed into the cluster and the chief-deputy
technique is applied to every module, information about the motion of the spacecraft
w.r.t. the VP are available, but nothing can be said about a deputy-deputy type of
motion. Plus, the idea of studying the motion of each agent with respect to all the
others is inconceivable, since as nm grows the problem quickly becomes extremely
complex and unmanageable.

In order to lighten up the descriptions of the investigated techniques in the up-
coming sections, it wants to be revised here the distinction between keplerian and
non-singular orbital elements, since both of them will be used. The keplerian set of
elements œK has been actually already introduced through Table 1, while the non-
singular set is given by œN =(a u ex ey i Ω)T , where ex = ecosω and ey = esinω are
the components of the eccentricity vector E = (ex ey)

T and u = ω +M is the mean
argument of latitude. In addition, it is also worth recalling that when two spacecraft
are considered and their states are expressed in terms of orbital elements, the relative
motion of the deputy D w.r.t. the chief C can be expressed in terms of relative orbital
elements. In the keplerian case, given the vectors œK

C and œK
D, the relative elements

are simply computed as the difference between the elements of the two objects:

∆œK = œK
D−œK

C = (∆a ∆e ∆ i ∆Ω ∆ω ∆M)T . (2)

In the non-singular case instead, the vectors œN
C and œN

D lead to the relative elements
through a nonlinear combination:

∆œN =
(

∆ ã ∆λ ∆ex ∆ey ∆ ix ∆ iy
)T

=
(

∆a/a ∆u+∆Ω cos i ∆ex ∆ey ∆ i ∆Ω sin i
)T (3)

where ∆ ã is an additional measure of the differential semimajor axis, ∆λ is the
differential mean longitude, ∆ex and ∆ey are the components of the relative eccen-
tricity vector ∆E = (∆ex ∆ey)

T and finally ∆ ix and ∆ iy are the components of the
relative inclination vector ∆I = (∆ ix ∆ iy)T .
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Eccentricity/Inclination Vector Separation Technique

The Eccentricity/Inclination (E/I) vector separation technique (EIVS) is particularly
attractive since it can naturally enforce collision avoidance. It has been originally
proposed to face the problem of satellites colocation in geostationary slots [11] and
in the last years widely investigated and successfully applied also for formations of
satellites in LEO ([8, 19, 7]).

Through the use of a rotating reference frame Crθh which has its origin coincident
with the chief spacecraft, the rθ -plane lying on its orbital plane and the r-axis par-
allel to its position vector (positive outwards), the relative motion can be expressed
in non-dimensional form through:

δx(u)≈ ∆ ã −∆E cos(u−ϑ) (4a)

δy(u)≈ −3
2

∆ ãu+∆λ +2∆E sin(u−ϑ) (4b)

δ z(u) ≈ +∆ I sin(u−ϕ) (4c)

where ∆E and ∆I are expressed in polar notation, with ∆E = ‖∆E‖ and ∆ I = ‖∆I‖
and with ϑ and ϕ being the relative perigee and the relative ascending node [7].

Assuming ∆λ = 0 and ∆a = 0 to cancel the offsets and to prevent the drift in the
along track direction, the collision risks can be reduced by setting:

ϑ = ϕ + kπ (5a)
Dmin ≤ amin{∆E,∆ I} (5b)

with k integer, while the constraint

a
√

4∆E2 +∆ I2 ≤ Dmax (6)

ensures satisfaction of the MaxDC. If the J2 perturbation is included in the model
Eq. (4), ∆a = 0 is not valid anymore and Eqs. (5) and (6) need to be adapted [7].

To better relate the E/I relative vectors with the distances, it could be useful to
consider their dimensional version obtained multiplying them with the semi-major
axis of the VP. The new dimensional parameters can be distinguished by the original
ones for the presence of a small hat (̂), so that to ∆E corresponds a ∆ Ê = a∆E, to
∆ I corresponds a ∆ Î = a∆ I and so on. Then, in the design phase, it can be helpful
defining the elements of the spacecraft in the planes ∆ êx∆ êy and ∆ îx∆ îy.

Let us now see how the EIVS approach can be used to configure a cluster with
multiple objects. The problem can be geometrically faced in two steps:

1. in each of the two planes ∆ êx∆ êy and ∆ îx∆ îy the Dmax is used to identify a region
around the origin, which includes points satisfying the MaxDC;

2. in each region points are chosen with a mutual distance at least equal to Dmin.

An example of how the described geometric logic can be applied is given in
Fig. 1, where each point represents the relative eccentricity (left plot) and the relative
inclination (right plot) vector of a spacecraft w.r.t. the VP, which is highlighted as a
small circle at the origin of the planes.
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Fig. 1 Example of relative
eccentricity (left) and inclina-
tion (right) vectors for a clus-
ter of 6 spacecraft.
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Provided that in each plane each point is sufficiently spaced from all the others
and that corresponding points from the two planes satisfy the (anti-)parallelism con-
dition (Eq. (5a)), the MinDC can be ensured. In the given example the MinDC are
based on a value Dmin = 5 km and are represented by the small circles, inasmuch
as they picture the forbidden regions around the spacecraft and, as it can be seen,
are not overlapping. The fulfillment of the MaxDC can instead be studied by taking
into consideration the distance of the points from the origin of the planes. These con-
straints are based on a value Dmax = 30 km and are represented by the gray regions,
which can be evaluated through Eq. (4). It can be noted that in Fig. 1 corresponding
points from the two planes, not only share the same phase of the relative vectors,
but have also the same magnitude. This is the reason why in the right plot of Fig. 1
the points are crammed in the center leaving the outer part of the gray region empty.
The condition of equal magnitudes is not required by the EIVS technique, but it has
been introduced to limit the differential perturbations experienced by the spacecraft.

Fig. 2 Regular grid for the
packing problem of the
EIVS technique.

The given example shows how the relative E/I vec-
tors can be selected while using simple 2-D geometry.
Six points have been chosen from the gray regions but
this number can easily grow if a smarter selection is per-
formed. The maximization of nm becomes then a packing
problem, since it turns into the research of the maximum
number of points that can be placed into a given 2-D re-
gion. In this study the regular grid shown in Fig. 2 has
been used, where each point is at the center of a regular
hexagon and is surrounded by six points located at the vertices of the hexagon.

J2 Invariant Orbits Technique

The technique of the J2 invariant orbits (J2In) consists in placing the spacecraft in
orbits that are invariant w.r.t. the effect of the J2 term. When the J2 perturbation is in-
cluded in the motion of a spacecraft, its osculating elements experience oscillations
and a secular growth. The oscillations are usually considered harmless, while the
dangerous effect is the one associated with the secular growth, since it can produce
a drift of the orbits. For this reason it can be useful focusing on the mean elements1

œK , which are free from the oscillations and are only subject to the secular growth.

1 Mean elements are usually identified by the presence of an overbar (−), but since the J2In tech-
nique does not use osculating elements, to relieve the notation the overbar in this section is dropped.
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When the mean elements are used, it must be noted that the J2 term only alters
the elements [Ω ω M], which experience time drifts modeled as [2]:

dΩ
dt

= −3
2

J2n
(

RE

p

)2

cos i (7a)

dω
dt

= −3
4

J2n
(

RE

p

)2 (
5cos2 i−1

)
(7b)

dM
dt

= n+
3
4

J2n
(

RE

p

)2√
1− e2

(
3cos2−1

)
. (7c)

where n =
√

µ/a3 and p = a
√

1− e2 are the mean motion and the semilatus rectum
of the VP, while µ and RE are the gravitational parameter and the radius of the Earth.

The concept of the J2 invariance is based on the fact that if the first three ele-
ments [a e i] of the different spacecraft are properly selected, it is possible to make
them having the same rates of variation for the last three elements [Ω ω M]. Indeed
this approach aims at canceling the relative rates, so that the secular drift can be
prevented. Nevertheless, it is very uncommon to match all the three rates, because
in this way the constraints would restrict considerably the possible relative orbits. It
is instead usually preferred to combine the rate of ω and M so that only the rates of
Ω̇ and of ω̇ + Ṁ need to be matched.

To perform the matching process, the constraints are expressed in terms of the
deputy relative elements, hence the following expressions can be retrieved [24]:

fa = η∆a+2Dae∆e = 0 (8a)

fi = η2 tan i∆ i−4e∆e = 0 (8b)

where the absolute and differential elements used are the ones of the chief and of
the deputy, respectively. In addition η =

√
1− e2, D = J2

4L4η5 (4+ 3η)(1+ 5cos2 i)

and L =
√

a/Re hold. Please note that Eq. (8) allows for computing ∆a and ∆ i once
that ∆e is fixed, but the cases where ∆a or ∆ i are given remain also valid. Finally,
for what concerns the remaining differential elements [∆Ω ∆ω ∆M], they can be
freely chosen as long as they satisfy the MinDC and the MaxDC conditions.

Let us now approach the problem for the cluster case. If multiple objects are
involved in the process, the J2 invariance should be ensured for all of them, meaning
that each of their orbits should be J2 invariant w.r.t. all the others. In this perspective
Eq. (8) should be applied for each pair of elements (sat/VP and sat/sat), turning then
into a set of 2np conditions, with np = 0.5nm(nm + 1) denoting the number of the
pairs. As soon as nm > 2 the system becomes overdetermined and needs then to be
solved numerically, so that it becomes useful recasting Eq. (8) into the form

fa < ε (9a)
fi < ε (9b)

where ε is a user-defined threshold within which the solution must satisfy the con-
straints. According to the approximations used in the derivation of Eq. (8) (only
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terms of O(J2) have been retained) [24], in the performed study is has been assumed
ε = 10−3 to make it having the same order of magnitude of the J2 coefficient.

Another step towards the definition of a cluster configuration consists in identi-
fying the range of values from which the parameters ∆a, ∆e and ∆ i can be cho-
sen. Given two objects A and B and stating that they move on J2 invariant or-
bits, it should be implied that the orbit of A is invariant w.r.t. the one of B and
viceversa. It has been seen instead, that if the differential elements [∆a ∆e ∆ i]
are too large, the above-mentioned double invariance can be missing. There are
cases indeed where the elements of B are selected to make it having an orbit in-
variant w.r.t. A, but then inverting the roles and treating B as chief and A as deputy,
the invariance constraints are violated. To avoid this situation, the ranges of the
differential elements able to ensure the desired double invariance have been re-
searched. According to the eccentricity of the VP, the attention has been posed on
an interval −0.009 < ∆e < 0.039, which has then been divided into a regular grid.
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-0.9

0.3

1.5

2.7

3.9

∆e1 ×102[−]
∆

e 2
×

10
2 [
−
]

Fig. 3 Map of the J2 double in-
variance shown in terms of rela-
tive eccentricities.

Next, for all the grid points the double invariance has
been pairwise checked and the results are depicted
in Fig. 3. The gray area emphasizes the satisfaction
of the double invariance, which for example is ful-
filled by two objects having orbital elements defined
with differential eccentricities equal to 2.7× 10−2

and −0.3× 10−2, but not for those two with orbital
elements obtained from the values 3.9× 10−2 and
1.5× 10−2. Please note that the plot is symmetric
w.r.t. the plan bisector and therefore for both the given
examples, the results do not depend on which of the
two values is assigned to which of the two objects.
Finally the black-sided square highlights the wanted
range for the differential eccentricity, so that if all the orbits of the cluster satisfy

−0.023 km < ∆a < 0.048 km
−0.007 < ∆e < 0.033

−0.00025 rad < ∆ i < 0.00120 rad
(10)

they are all J2 invariant w.r.t. each other.
To investigate the cluster case, the definition of the initial configuration can be

expressed as the determination of those vectors ∆œK
i (with i = 1,2, ...,nm), whose

elements are bounded by the conditions given in Eq. (10) and also fulfill a system
of nonlinear conditions given by the 2np equations obtainable from Eq. (8) and
by additional equations deriving from the application of Eq. (1). To research the
solution the solvers FMINCON from MATLAB and SNOPT have been used.

In the way the problem has been implemented, it is trivial that nm is not a variable,
but a parameter provided by the user. Therefore, to maximize the number of space-
craft that the cluster can allocate, it has been decided to proceed manually solving
the problem with different increasing values of nm. When a solver cannot find a solu-
tion anymore, the cluster is saturated and the maximum value for nm has been found.
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Distance Bounded Natural Orbits Technique

The technique of the distance-bounded natural orbits (DBNO), as suggested by the
name itself, aims at finding orbits that satisfy naturally the MinDC and the MaxDC.
The technique is presented in Mazal and Gurfil [17] and relies on a constraint which
is proven to ensure bounded relative distances when a time invariance assumption
for the environmental perturbations is made. This idea is similar to what is done with
the J2In approach, but this time the invariance can take all perturbations deriving
from the gravitational potential into account.

Given two objects A and B with equal ballistic coefficients, if it results

œB(t0) = œA(t0)+
∫ t0+∆ t

t0
œ̇Adt +[0 0 0 ∆Ω 0 0]T (11)

then it also holds

2ηmin sin
( |∆Ω |

2

)
−Vmax|∆ t| ≤ ds(t)≤ 2ηmax sin

( |∆Ω |
2

)
+Vmax|∆ t| (12)

where Vmax denotes the maximum speed of A, while ηmax and ηmin denote its maxi-

mum and minimum equatorial projections, being ηA(t) =
√

x2
A(t)+ y2

A(t).
For a given set of constraints on the minimum and maximum distances Dmin and

Dmax, the values ∆ t and ∆Ω can be chosen while satisfying

2ηmin sin
( |∆Ω |

2

)
−Vmax|∆ t| ≥ Dmin (13a)

2ηmax sin
( |∆Ω |

2

)
+Vmax|∆ t| ≤ Dmax (13b)
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Fig. 4 Example of ∆ t and ∆Ω selec-
tion while satisfying the MinDC ( )
and the MaxDC ( ).

Equation (13) can be observed graphically in
Fig. 4, showing for which values of ∆Ω and ∆ t
the MinDC and the MaxDC are satisfied, when
Dmin = 5 km and Dmax = 100 km are consid-
ered. The satisfaction of each constraint is high-
lighted with a different color, therefore for the
mission design a pair [∆Ω ∆ t] must be selected
from the overlapping area.

In the case of nm spacecraft, the DBNO tech-
nique keeps being valid as long as the con-
straints expressed through Eq. (13) are applied
to each pair of them. The differences in time and
RAAN of the i-th spacecraft w.r.t. the VP can be denoted as ∆Ω0i and ∆ t0i, while
the differences between any pair of spacecraft (i, j) can be denoted as

{
∆Ωi j = ∆Ω0 j−∆Ω0i
∆ ti j = ∆ t0 j−∆ t0i

with j = 1,2, ...,nm and j 6= i. (14)
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In addition, the small angles approximation can be introduced to replace the sine
functions with their arguments. Indeed in this work several Dmax up to few hundreds
of km will be considered, leading to a maximum differential RAAN of few degrees
totally compatible with this approximation. Equation (13) turns then into:

ηmin|∆Ωi j|−Vmax|∆ ti j| ≥Dmin (15a)
ηmax|∆Ω0i|+Vmax|∆ t0i| ≤Dmax. (15b)

Concerning Eq. (15b) and the MaxDC, it should be noted that the hypothesis of
equal ballistic coefficients is missing in this work, since the VP is not a real space-
craft and cannot be affected by the atmospheric drag. This means that a slow drift
of the spacecraft w.r.t. the virtual point should be expected.

When approaching the problem while trying to maximize the number of mod-
ules nm, Eq. (15b) is immediately used to define the domain of the differential time
and RAAN from which the sets [∆Ω0i ∆ t0i] should be selected. On the other side
Eq. (15a) is exploited for the actual selection of the sets [∆Ω0i ∆ t0i]. From a first
glimpse at Eq. (15a) and with the help of Fig. 4, it can be seen that it is never pos-
sible to satisfy the MinDC with a pure time shift and that a minimum differential
RAAN |∆Ω |min is always required. Indeed exploiting Eq. (15a) and the fact that
|∆ ti j|> 0, the minimum value |∆Ω |min can be retrieved

|∆Ωi j|>
Dmin

ηmin
≡ |∆Ω |min (16)

and the differential RAAN can be chosen according to |∆Ωi j| = (1+ kΩ )|∆Ω |min
with a small kΩ > 0. In turn an upper bound for the time shift can be defined as

|∆ ti j|<
kΩ Dmin

Vmax
≡ |∆ t|max (17)

and similarly to what has been set for the differential RAAN, the differential times
can be chosen according to |∆ ti j| = (1− kt)|∆ t|max with a small kt > 0. It is worth
noticing that the determination of the two boundaries |∆Ω |min and |∆ t|max and the
selection of the two coefficients kΩ and kt do not depend on the specific pair (i, j),
therefore it is possible to define the values of the four parameters just once and use
them to find the initial condition of all the spacecraft.

At this point, it is clear that dividing the ∆Ω domain in a grid of points equally
spaced by (1+ kΩ )|∆Ω |min allows finding the differential RAAN ∆Ω0i and maxi-
mizing the number of spacecraft nm at the same time. Concerning the time shifts, a
trivial solution can be obtained assuming ∆ t0i = 0 ∀i. Otherwise if time shifts differ-
ent from zero are desired they can be selected through the knowledge of the |∆ t|max.

Delayed Elements Technique

The technique of the delayed elements (DeEl) is very similar to the DBNO tech-
nique, inasmuch as it aims at finding relative orbits which are invariant w.r.t. the
perturbations deriving from the full gravitational potential. The main difference con-
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sists in the fact that the elements of the spacecraft in this case are obtained only
through the use of the time difference ∆ t, which means that all the members of
the cluster pass through the same positions of the virtual point, but they do it with a
certain time difference ∆ t [9]. In this way all the spacecraft experience the same per-
turbations with minimal variations from the gravitational field with the consequence
that maneuvers to counteract differential perturbations are greatly reduced.

The cluster obtainable with this technique can be imagined as a train of spacecraft
separated in the along track direction, just like pearls on a string. Talking about
separation distance d or time difference ∆ t is equivalent, since these two quantities
can be easily related exploiting the knowledge of the mean motion. Indeed given a
spacecraft with mean motion n moving for a time ∆ t, the distance d between the
initial and the final positions can be approximated with the traveled arc of trajectory
d
_

, which exploiting Kepler’s second law can be expressed as

d
_

=
abn∆ t

r
(18)

where b is the semiminor axis of the orbit and r is the position vector magnitude.
It is worth noticing that for an elliptical orbit r changes with time and according
to the location of the spacecraft along the orbit a different d

_

can correspond to the
same ∆ t. For this reason once that the maximum and the minimum values of r are
computed, the minimum and the maximum distances corresponding to the given ∆ t
are also known. From a different point of view, this means also that when the Dmin
and Dmax values are given, the evaluation of the required time difference ∆ t is quite
straightforward. And this is exactly how the initial conditions of two spacecraft can
be defined, since in this case the Dmin and Dmax are assumed to be known and can
be used to retrieve a range of values from which the ∆ t should be picked to satisfy
the distance constraints. Once that the ∆ t is chosen, the initial state of a spacecraft
B can be computed from that of a spacecraft A through Eq. (11), assuming ∆Ω = 0.

In a similar way, the configuration of an entire cluster can be approached, with
the core of the process consisting in the identification of the time shifts associated
with the different objects of the cluster. In this perspective, following the example
of the DBNO technique, it can be useful to distinguish between the time shifts of
the spacecraft w.r.t. the VP ∆ t0i and the time shifts among the spacecraft

∆ ti j = ∆ t0 j−∆ t0i (19)

with i, j = 1,2, ...,nm and i 6= j. The constraints on the distances only appear indi-
rectly, inasmuch as they are used to define an upper and a lower bound for the values
of the time shifts ∆ t0i, which need to be researched while satisfying Eq. (19). In
particular, the MaxDC defines the maximum allowed time shift |∆ t|max of a space-
craft w.r.t. the VP, meaning that it should result ∆ t0i

|∆ t|max
∈ [−1 1]. On the other side

the MinDC is taken into account computing the minimum time shift |∆ t|min corre-
sponding to the minimum distance Dmin and ensuring that |∆ ti j|> |∆ t|min ∀(i, j).
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Finally, when the interval [−|∆ t|max |∆ t|max] is divided into sub-intervals of
length |∆ t|min, the problem of maximizing the number of spacecraft nm is also ad-
dressed, with the nodes of the grid denoting the time shifts ∆ t0i.

3 Comparison of the Techniques

To analyze the behaviour of the different techniques and perform their comparison,
different points of view have been considered focusing on the number of spacecraft
populating the cluster and on the ∆V they require for the corrective maneuvers.

The maximum number of points nm that can be packed into a given volume of
space around the VP clearly depends on the constraints MinDC and MaxDC, since
for a given value of Dmin an increase of Dmax involves a larger volume around the
VP with the chance to allocate more points in it, while for a given value of Dmax an
increase of Dmin involves a larger safety distance between any pair of points with a
consequent reduction of their total number for that same volume. This makes then
nm dependent on three different aspects of the problem: the TIC, the Dmin and the
Dmax. To observe the effect of the distances, the constraints given in Eq. (1a) and
Eq. (1b) have been applied with several values of Dmin and Dmax. For the sake of
brevity, in the following a specific set of values [Dmin Dmax] might also be denoted
simply as DR = Dmin/Dmax so that, for example, the notation DR = 1/10 indicates
that the cluster needs to satisfy a Dmin = 1 km and a Dmax = 10 km.

Concerning the ∆V , it is clear that due to the differential perturbations experi-
enced, the spacecraft will naturally drift over time and even if the cluster is ini-
tialized to satisfy the distance constraints, sooner or later the relative configuration
might become unsafe. The safety of the cluster can be ensured through proper cor-
rective maneuvers, hence the required ∆V can be used as second key parameter.

3.1 Slots vs Spacecraft

This section it intended to shortly explain that a distinction between the slots occu-
pied by the spacecraft and the spacecraft themselves has been made.

The slots are those reference locations in which the spacecraft are deployed and
that should be tracked by them. They are the entities directly involved in the search
process and are treated as mass-less points. The ultimate goal is to find locations that
satisfy the distance constraints indefinitely, so that when the spacecraft are deployed
in them and track them through station keeping maneuvers, one can be sure that the
distance constraints will not be violated. Due to this distinction, in the early phase of
the study, for each set [TIC Dmin Dmax], the TIC is used to identify slots that ensure
satisfaction of the MinDC and the MaxDC. Then, in a second moment the slots are
filled with spacecraft and their motion is studied.
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3.2 Number of Slots

The identification of the slots consists in defining the initial reference vectors while
taking also their natural evolution into account. A set of states satisfying the con-
straints at time t = 0 s and violating them at t = 10 s would be as useless as one
violating them at t = 0 s. An ideal set never violates the constraints, but this is not
a realistic case because of the differential perturbations, which bring the vectors to
slowly drift towards an unsafe configuration. The drifts grow indeed over time in-
volving an increase in the number of violations. What can be done is to treat the
configuration returned by the TIC as a candidate solution, propagate it for a certain
timeframe and discard the state vectors violating the distance constraints.

For each set [TIC Dmin Dmax] a certain number of candidate slots ns,c is obtained
with the initial state of each slot defined as:

œs(t0) = f (œVP(t0)+∆s). (20)

with s = 1,2, ...,ns,c and f is a function denoting the fact that the state of the sth slot
is obtained applying some differences ∆s to the initial state of the virtual point. In
Eq. (20) a generic function f has been used to take into account that those differences
change from one technique to another. They can be the differential time ∆ t of the
DeEl technique, or the differential mean elements of the J2In technique, and so on.

Once that the states of the candidate slots are available, they are converted in
Cartesian coordinates and propagated for five orbits including the J2 effect. The
choice for such a short time frame is due to the fact that some techniques (EIVS,
J2In) identify the initial configuration by using simplified models of the relative
motion, which become less and less reliable over time. The decision to include the
J2 perturbation is instead motivated considering that its effect is the largest one in
a LEO. A spacecraft would also be significantly perturbed by its interaction with
the atmosphere, but in this first phase the main characters of the study are the slots,
which can be treated as mass-less points free from the effect of the drag.

Once that the Cartesian propagation is completed the relative distances are re-
covered and checked. At first the check of the maximum distance from the virtual
point is considered and the slots violating it are directly discarded from the solution.
Afterwards the attention shifts towards the MinDC, whose check takes advantage
of the graph theory ([10, 1]). It is clear that a slot violating the MaxDC cannot be
part of the solution, but if the slots (x,y) violate the minimum distance there is no
need to remove them both, rather is it enough to discard only one of them and two
solutions may be used, i.e. one including x without y and another including y with-
out x. However, as the number of MinDC violations increases, it becomes more and
more difficult to identify the slots to remove; hence the graph theory might come in
handy. In particular, a graph can be constructed from all the pairs of slots satisfying
the minimum distance constraints, so that the identification of the most populated
cluster can be set as a maximum clique problem MCP ([4, 28]).

For the sake of clarity let us consider a practical example with five candidate slots
all satisfying the MaxDC. Suppose instead that a violation of the minimum distance
is recorded for the pairs of slots (1, 2), (1, 5) and (2, 3). Solving the MCP for the
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graph associated with the problem, three maximum cliques can be found:

C1 = {1 3 4} C2 = {2 4 5} C3 = {3 4 5}

This means that given the five candidate slots, the largest safe cluster cannot include
more than three of them, and moreover not every three-element combination of the
five candidates is acceptable, rather only the combinations C1, C2 and C3.

The combinations of slots obtained from the MCP resolution represent then solu-
tions of the initial configuration problem and once that they are available the search
can be considered concluded. Figure 5 shows how the number of slots varies with
the Dmax for all the techniques examined and for Dmin fixed at 1 km, 5 km, 9 km, 13
km and 17 km. As expected, for every TIC, the number of returned slots increases
when increasing Dmax once the Dmin is given and decreases when increasing Dmin
once the Dmax is given. The less populated clusters would be the ones obtained from
the DBNO, whose trend is always the lowest. A slight increase in the slots number
is achieved with the J2In and DeEl, which behave similarly, with trends very close
to each other. Finally the EIVS is the technique returning the largest slots number in
most of the cases, with the separation between its and the rest of the trends getting
larger when reducing the minimum distance boundary. This behaviour depends on
the fact that the constraints required by the EIVS are less restrictive than those im-
posed by the other techniques, with the consequence that a larger number of vectors
satisfying them can be found.
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Fig. 5 Number of slots as a function of Dmax for the different techniques.

Graphically Fig. 6 can also help, giving an overview of the arrangement asso-
ciated with the different techniques. Each subfigure is associated with a TIC and
shows the initial configuration of slots around the VP when the distance boundaries
are given by DR = 17/85. The representation is given in an inertial frame translated
to shift its origin in the virtual point, which is then located at the center of the sub-
figures and colored in black, just like the solid lines representing its orbit. As it can
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be seen, the slots from EIVS are densely arranged on a plane, while the slots from
the DBNO and DeEl are arranged on a line and the slots from the J2In are sparsely
distributed in a 3-D region.

−50050

−50 0
50

−50

0

50

x [km]y [km]

z
[k

m
]

(a) EIVS, 10 slots

−50050

−50 0
50

−50

0

50

x [km]y [km]

z
[k

m
]

(b) DBNO, 4 slots

−50050

−50 0
50

−50

0

50

x [km]y [km]

z
[k

m
]

(c) J2In, 7 slots

−50050

−50 0
50

−50

0

50

x [km]y [km]

z
[k

m
]

(d) DeEl, 10 slots

Fig. 6 Slots arrangements returned by all techniques for Dmin = 17 km and Dmax = 85 km.

3.3 ∆V Budget

Once that the study of the slots had been completed, the attention has been shifted
towards the behaviour of the spacecraft, with the final goal of evaluating the ∆V
budget required to maintain the distance constraints satisfied and the cluster safe.
As a matter of fact, the maximum number of spacecraft that can be packed into a
cluster is for sure an important parameter to be considered for a cluster mission, but
at the same time one cannot forget the key role played by the ∆V budget.

To perform this type of analysis, several sample slots configurations have been
selected and for each configuration simulations have been run assigning a spacecraft
to each of its slots. In particular, a direct correspondence has been implemented so
that each spacecraft is assigned to a single slot and tries to track it using station
keeping maneuvers. Each simulation consisted in a propagation of the cluster ini-
tial configuration in an inertial frame under the effect of the gravitational potential
(terms up to J20 have been included) and of the drag. The different TIC examined try
to counteract the differential perturbations in a different way, hence it is reasonable
to expect a different evolution of the slots over time and a different amount of ∆V
required for the station keeping.
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The station keeping has been thought as composed by three phases. At first the
spacecraft computes the offset, in terms of differential orbital elements, of its current
state from its reference state. Then the maneuver to cancel the offset is computed
as a sequence of impulsive control actions aimed at correcting the orbital elements.
Finally the maneuver is executed. Please note that in the second phase each space-
craft computes the maneuver taking only its own elements into account. The relative
motion w.r.t. the other spacecraft is entirely neglected, hence during the execution
of the control actions small violations of the distance boundaries might be recorded.

For this study, five sample configurations have been observed, one for each value
of the Dmin parameter. The maximum distance constraints are instead based on a
value Dmax = 5Dmin. Table 2 summarizes the five cases showing the number of
spacecraft nm for the four techniques.

Table 2 Number of spacecraft obtainable for five sample cluster configurations.

DR EIVS DBNO J2In DeEl

1/5 14 4 4 10
5/25 12 4 6 10
9/45 12 4 8 10
13/65 12 4 7 10
17/85 10 4 7 10

For each examined configuration several tests have been performed, since it has
been decided to implement a different logic to trigger the station keeping maneuvers:

PM - a fixed periodic maneuvering cycle is implemented, i.e. at regular time inter-
vals all the spacecraft measure their offsets, compute the corrective maneuver to
cancel them and perform it;

CV - each spacecraft computes and performs the required maneuvers only when the
violation of one of the constraints MinDC or MaxDC is detected.

The PM logic has the advantage that it allows to know a priori the times at which
the computation of the maneuver is performed, but as a drawback the constraints on
the distances do not play any role and if a violation occurs nothing is done to fix it.
Conversely, in the CV logic the distance constraints are actively used and only the
involved spacecraft actually perform a maneuver, but as it will be seen exploring the
results, it can happen that some spacecraft require very sparse but large corrections,
that can produce severe violations of the constraints.

One parameter for the evaluation and comparison of the results can be identi-
fied in the average ∆V required by the cluster, i.e. the total ∆V required by all the
spacecraft averaged w.r.t. nm. This choice is suggested by the fact that the number of
spacecraft changes for each of the four techniques and usually also with the selected
maneuver logic, hence the comparison of the total ∆V would make no sense.

Figures 7 and 8 compare the results for the initial configuration obtained with the
technique EIVS for DR = 1/5. The considered time horizon is 10 days. In Fig. 7 the
∆V budget is shown while Fig. 8 gives an overview of the number of the required
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Fig. 7 ∆V budget required by an initial
configuration from the technique EIVS for
two maneuver logics.

Fig. 8 Number of control actions required
by an initial configuration from the tech-
nique EIVS for two maneuver logics.

control actions. In both plots a single circle refers to a single spacecraft of the clus-
ter. The spreading of the circles for a given maneuver logic depends on the fact that
according to the distance between a spacecraft and the VP, the differential pertur-
bations experienced are different and then a different amount of ∆V is required.
With particular reference to Fig. 8, when the CV maneuver logic is implemented
the different differential perturbations bring the spacecraft to violate the distance
constraints at different times, that is why the circles are so spread. On the other side,
when the PM logic is used, all the spacecraft perform the corrective maneuvers pe-
riodically, hence they all require approximately the same number of control actions.
It can then be summarized that for the shown example the maneuver logic does not
have a big impact on the average ∆V , rather it affects the number of control actions
used and the way the propulsion system is stressed. As a matter of fact, an increase
in the time interval between two maneuvers implies larger sparse maneuvers instead
of shorter frequent ones.

Table 3 gives instead a measure of the constraints violations recorded in the con-
sidered example showing the minimum and the maximum distances reached.

Table 3 Distance violations
detected by an initial configu-
ration from the technique EIVS
for two maneuver logics.

Logic Dmin Dmax

PM 6.73% 1.22%
CV 21.18% 2.08%

The use of percentage values stems from the comparison of the maximum violations
with the foreseen boundaries set at Dmin = 1 km and Dmax = 5 km. The MaxDC vi-
olations are on the same order of magnitude for both the maneuver schemes PM
and CV, meaning that in both cases the maximum distance reached is up to ap-
proximately 2% larger than the 5 km boundary value. A significant difference can
be seen instead on the MinDC side, since in the PM case the minimum distance
reached stays above 93% of the 1 km boundary value, while in the CV case it can
decrease until 78% of it. It must be pointed out that such constraints violations oc-
cur sporadically and always within the first one or two orbits after the execution of
the first control action, but this does not mean that the station keeping strategy does
not work. This behaviour was already expected and can be attributed to the partic-
ular way the trajectory corrections have been implemented. As a matter of fact the
station keeping is not instantaneous, but is composed by several separate impulsive
control actions, taking place at different locations along the orbit. Between the first
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and the last control action the spacecraft travel on transfer orbit arcs and it is in this
short timeframe that the violations are recorded. Indeed, as it can be recalled from
the description of the three phases of the station keeping, for each spacecraft the
required maneuvers are computed to make it track its reference state, but without
taking into consideration the relative motion w.r.t. the other spacecraft during the
execution of the maneuver itself.

Despite the fact that the CV control logic actually requires a violation of the dis-
tance boundaries to trigger the computation of a correcting maneuver, in general a
violation is clearly undesirable. Nevertheless in this part of the study the intention
was not really to prevent violations as a whole, rather to see if a station keeping ap-
proach could be sufficient to perform cluster keeping and to obtain a raw evaluation
of the ∆V budget required by different configuration designs.

In Figs. 9 and 10 an overview of the violations is depicted for the MinDC and the
MaxDC, respectively. Each figure is divided into four parts in order to compare the
different techniques. Each part illustrates the behaviour of a TIC through two bars,
one for each of the two tested maneuver logics. Recalling that for a single TIC and a
single maneuver logic five sample configurations have been tested, each bar renders
the worst out of the five cases, i.e. the largest percentage violation w.r.t. the reference
distance boundary. For example if one considers the EIVS technique and a station
keeping strategy applied regularly every five orbits, it can be seen that the maximum
violations of the MinDC and the MaxDC are below 10% and 5%, respectively.
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Fig. 9 Violations overview of the MinDC. Fig. 10 Violations overview of the MaxDC.

Observing the different parts of the figures singularly, it can be noticed that the
CV bar is always higher than the PM bar. This trend depends on the fact that, as
already mentioned, when the timeframe between two consecutive maneuvers in-
creases, the differential drift of the spacecraft from the path of their reference initial
states increases as well, so that larger correcting maneuvers are required and larger
violations can be experienced. In addition, in the CV cases the bars can become
much higher than the PM cases, because a maneuver already starts with a violation,
which then is accentuated by the application of the corrections.

As a final outcome, it is clear that the station keeping framework is not entirely
violations-free and that the relative motion during the transfer paths should also be
taken into consideration. If this aspect of the problem was implemented, the control
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strategy would have been different, with a different sequence of control actions but
without a substantial change in the overall estimated ∆V budget.

To conclude this part of the study and the comparison of the different techniques,
let us now focus on the results of the station keeping investigation in terms of the
∆V required by the spacecraft. So far it has been seen that the different TIC provide
a different number of slots and react differently to the distance constraints, but a
comparison of the ∆V budget is still missing.

To develop this analysis, two points of view can be considered. Let us focus on
a single DR. On one side one can fix the maneuver logic and pay the attention on
entire configurations. On the other side it could be interesting to fix a maximum ∆V
budget and see, for each TIC, how many spacecraft comply with this limitation. For
a better understanding, Figs. 11 and 12 come in handy, respectively.
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Fig. 11 ∆V budget for clusters ob-
tained with different TIC (maneuver
logic PM and case DR = 1/5).

Fig. 12 Number of deployable spacecraft according to dif-
ferent ∆V thresholds for different TIC and different ma-
neuver logics, in the case DR = 1/5.

Figure 11 focuses on the case DR = 1/5 with station keeping performed every
five orbits. Each circle denotes the ∆V required by a spacecraft during the entire
time frame of 10 days, while the stars and the solid line connecting them highlight
the average ∆V required by the entire cluster. As expected, the less differential per-
turbations are included in the definition of the initial configuration, the larger the
drift among the spacecraft is and the less homogeneous the fuel consumption is.
That is why for the DeEl and DBNO the ∆V of the single spacecraft are very close
to the average value, while the spreading increases for the EIVS and the J2In.

The second type of research led instead to Fig. 12, which refers again to the case
DR = 1/5, but this time all the TIC and the maneuver logics are included. In this
analysis it has been decided to seek how many spacecraft could be deployed from
the different investigated clusters, when a constraint on the maximum available ∆V
is set. For the case given in Fig. 12 five threshold values are considered. It can
be observed for example that if the smallest threshold is selected, only spacecraft
consuming less than 0.1 mm/s can be used, which means that only one configuration
is available, i.e. a six-objects cluster from the DeEl technique performing station
keeping every five orbits. If the threshold is raised to 0.9 mm/s, some solutions from
the DBNO and J2In become also available, while to use a cluster from the EIVS a
threshold of 1.7 mm/s is required. Similar results are obtained from the other DR,
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with the DeEl always showing a good compromise of high number of spacecraft
and low ∆V budget, followed by the DBNO, the J2In and finally the EIVS. On the
other side the EIVS can always provide the most populated clusters, but the price
for this asset is paid in terms of high ∆V requirements.

4 Conclusions

Exploiting the concept of fractionation it is possible to split and replace a single
monolithic spacecraft with multiple smaller ones flying close to each other. In such
a framework a safe relative motion must be guaranteed, bounding the minimum
and the maximum relative distances to prevent, respectively, collisions and escaping
drifts. With a proper orbit design, the spacecraft might initially satisfy the relative
motion constraints, but due to the differential perturbations acting on them, over
time their configuration slowly becomes unsafe and corrective maneuvers need to
be performed. In this work several designs have been surveyed, each providing a
cluster initial configuration while counteracting the differential perturbations with a
different approach. The identified test setup assumes that: 1) the cluster is centered
in a virtual point; 2) a minimum distance must be ensured between any pair of
spacecraft to prevent collisions; 3) a maximum distance must be ensured between
any spacecraft and the virtual point to prevent escaping drifts; 4) each spacecraft
tracks a reference state through station keeping maneuvers.

In the first part of the study, it has been investigated how the number of deploy-
able spacecraft changes according to the design and to the minimum and maximum
distance constraints. Later on, the obtained initial configurations have been propa-
gated in time and station keeping maneuvers have been implemented to evaluate the
∆V budget required by the single spacecraft and the entire clusters.

It emerged that in the design phase several aspects of the problem need to be
taken into account, like the number of deployable spacecraft, the need to intro-
duce countermeasures against violations of distance boundaries, the differential con-
sumption of fuel, etc. All these aspects are clearly interconnected with each other
and it is not possible to identify a configurations which has the best performances
from all points of view. According to the specific requirements of the mission the
best fitting configuration can be different, but the conducted study provides an indi-
cation and an analysis method.

Acknowledgements This research has been funded by the German Israeli Foundation Grant No.
1181-220.10.

References

[1] V. Balakrishnan. Schaum’s Outline of Theory and Problems of Graph Theory. Schaum’s Se-
ries. McGraw-Hill Education, 1997.

[2] R. Battin. An Introduction to the Mathematics and Methods of Astrodynamics, Revised Edi-
tion. Ed. by J. S. Przemieniecki. American Institute of Aeronautics & Astronautics, 1999.



Multiple Spacecraft Configuration Designs for Coordinated Flight Missions 21

[3] I. Beigelman et al. “Optimal Fuel-Balanced Impulsive Formationkeeping for Perturbed Space-
craft Orbits”. In: Journal of Guidance, Control, and Dynamics 31.5 (2008).

[4] R. Carraghan et al. “An exact algorithm for the maximum clique problem”. In: Operations
Research Letters 9.6 (1990).

[5] T. Carter et al. “Fuel-Optimal Rendezvous Near a Point in General Keplerian Orbit”. In:
Journal of Guidance, Control, and Dynamics 10.6 (1987).

[6] W. Clohessy et al. “Terminal Guidance System for Satellite Rendezvous”. In: Journal of the
Aerospace Sceinces 27.9 (1960).

[7] S. D’Amico. “Autonomous Formation Flying in Low Earth Orbit”. PhD thesis. Delft, Nether-
lands: Technical University of Delft, 2010.

[8] S. D’Amico et al. “Proximity Operations of Formation-Flying Spacecraft Using an Eccen-
tricity/Inclination Vector Separation”. In: Journal of Guidance, Control, and Dynamics 29.3
(2006).

[9] F. J. de Bruijn et al. “Delayed Target Tracking for Along-Track Formations”. In: Journal of
Guidance, Control, and Dynamics 38.7 (2015).

[10] R. Diestel. Graph Theory. Electronic library of mathematics. Springer, 2000.
[11] M. Eckstein et al. “Colocation Strategy and Collision Avoidance for the Geostationary Satel-

lites at 19 Degrees West”. In: International Symposium on Space Dynamics. Toulouse, France,
1989.

[12] F. Fumenti et al. “Quasi-Impulsive Maneuvers to Correct Mean Orbital Elements in LEO”.
In: Proceedings of the 3rd CEAS EuroGNC. Toulouse, France, 2015.

[13] P. Gurfil et al. “The SAMSON Project - Cluster Flight and Geolocation with Three Au-
tonomous Nano-satellites”. In: 26th AIAA/USU Conference on Small Satellites. SSC12-VII-2.
Salt Lake City, UT, USA, 2012.

[14] G. Hill. “Researches in the Lunar Theory”. In: American Journal of Mathematics 1.1 (1878).
[15] D. LoBosco et al. “The Pleiades Fractionated Space System Architecture and the Future of

National Security Space”. In: AIAA Space Conference and Exposition. AIAA 2008-7687. San
Diego, California: American Institute of Aeronautics and Astronautics, 2008.

[16] L. Mazal et al. “Closed-loop distance-keeping for long-term satellite cluster flight”. In: Acta
Astronautica 94.1 (2014).

[17] L. Mazal et al. “Cluster Flight Algorithms for Disaggregated Satellites”. In: Journal of Guid-
ance, Control, and Dynamics 36.1 (2013).

[18] D. Mishne. “Formation Control of Satellites Subject to Drag Variations and J2 Perturbations”.
In: Journal of Guidance, Control, and Dynamics 27.4 (2004).

[19] O. Montenbruck et al. “E/I-vector separation for safe switching of the GRACE formation”.
In: Aerospace Science and Technology 10.7 (2006).

[20] A. Moreira et al. “TanDEM-X: a TerraSAR-X add-on satellite for single-pass SAR interfer-
ometry”. In: International Geoscience and Remote Sensing Symposium. Vol. 2. 2004.

[21] S. Persson et al. “PRISMA - Demonstration Mission for Advanced Rendezvous and Formation
Flying Technologies and Sensors”. In: 56th International Astronautical Congress. IAC-05-
B5.6.B.07. Fukuoka, Japan, 2005.

[22] C. W. T. Roscoe et al. “Formation Establishment and Reconfiguration Using Differential Ele-
ments in J2-Perturbed Orbits”. In: Journal of Guidance, Control, and Dynamics 38.9 (2015).

[23] H. Schaub et al. “Hybrid Cartesian and Orbit Element Feedback Law for Formation Flying
Spacecraft”. In: Journal of Guidance, Control, and Dynamics 25.2 (2002).

[24] H. Schaub et al. “J2 Invariant Relative Orbits for Spacecraft Formations”. In: Celestial Me-
chanics and Dynamical Astronomy 79.2 (2001).

[25] H. Schaub et al. “Spacecraft formation flying control using mean orbit elements”. In: Journal
of the Astronautical Sciences 48.1 (2000).

[26] B. D. Tapley. “Gravity model determination from the GRACE mission”. In: The Journal of
the Astronautical Sciences 56.3 (2008).

[27] J. Tschauner et al. “Rendezvous zu Einem in Elliptischer Bahn um Laufenden Ziel”. In: Acta
Astronautica 11.5 (1965).

[28] D. R. Wood. “An algorithm for finding a maximum clique in a graph”. In: Operations Re-
search Letters 21.5 (1997).

[29] K. Yamanaka et al. “New State Transition Matrix for Relative Motion on an Arbitrary Ellipti-
cal Orbit”. In: Journal of Guidance, Control, and Dynamics 25.1 (2002).


