
METHODOLOGY ARTICLE Open Access

A practical exact maximum compatibility
algorithm for reconstruction of recent
evolutionary history
Joshua L. Cherry

Abstract

Background: Maximum compatibility is a method of phylogenetic reconstruction that is seldom applied to molecular
sequences. It may be ideal for certain applications, such as reconstructing phylogenies of closely-related bacteria on
the basis of whole-genome sequencing.

Results: Here I present an algorithm that rapidly computes phylogenies according to a compatibility criterion. Although
based on solutions to the maximum clique problem, this algorithm deals properly with ambiguities in the data. The
algorithm is applied to bacterial data sets containing up to nearly 2000 genomes with several thousand
variable nucleotide sites. Run times are several seconds or less. Computational experiments show that
maximum compatibility is less sensitive than maximum parsimony to the inclusion of nucleotide data that,
though derived from actual sequence reads, has been identified as likely to be misleading.

Conclusions: Maximum compatibility is a useful tool for certain phylogenetic problems, such as inferring the
relationships among closely-related bacteria from whole-genome sequence data. The algorithm presented
here rapidly solves fairly large problems of this type, and provides robustness against misleading characters
than can pollute large-scale sequencing data.

Keywords: Phylogeny, Maximum compatibility, Homoplasy, Bacterial genomes

Background
Reconstruction of phylogenetic trees from molecular se-
quence data has numerous applications. Diverse methods
of reconstruction, which are adapted to different circum-
stances or make different trade-offs between speed and
accuracy, are in use. Most of the commonly-used methods
fall into three categories: distance methods, maximum
likelihood, and maximum parsimony.
Less well known are methods based on maximum

compatibility. Although this criterion was first described
long ago [1, 2], compatibility methods have not seen
much use, perhaps because their conditions of applic-
ability have rarely been met. However, a compatibility
criterion is attractive for certain applications made pos-
sible by high-throughput sequencing, in which extensive
sequencing is performed on possibly large numbers of

closely-related organisms. An example is whole-genome
sequencing of very closely-related bacteria. Phylogenetic
reconstruction from such data is important for, among
other things, surveillance of bacterial pathogens.
Compatibility can most easily be compared to parsi-

mony. Maximum parsimony methods seek a tree that
minimizes the total number of changes of character state
that are necessary to explain the data. Conventional
maximum compatibility seeks a tree that minimizes the
number of characters (e.g., alignment positions) required
to have more than the minimum possible number of
changes of state. These criteria, though related, are not
equivalent, and can give different results. Suppose, for ex-
ample, that the polymorphic subset of our data consists of
100 two-state characters. One tree topology requires two
changes of state for each of 20 characters and just one
change for each of the remaining 80. A second topology
requires 50 changes of state for one character and just one
change for each of the remaining 99 characters. Maximum
parsimony prefers the first topology (120 state changes

Correspondence: jcherry@ncbi.nlm.nih.gov
National Center for Biotechnology Information, National Library of Medicine,
National Institutes of Health, Bethesda, MD 20894, USA

© The Author(s). 2017 Open Access The article is a work of the United States Government; Title 17 U.S.C 105 provides that
copyright protection is not available for any work of the United States government in the United States. Additionally, this is an
open access article distributed under the terms of the Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0), which permits worldwide unrestricted use, distribution, and reproduction in any
medium for any lawful purpose.

Cherry BMC Bioinformatics  (2017) 18:127 
DOI 10.1186/s12859-017-1520-4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193777588?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1520-4&domain=pdf
mailto:jcherry@ncbi.nlm.nih.gov
http://creativecommons.org/publicdomain/zero/1.0
http://creativecommons.org/publicdomain/zero/1.0


rather than 149), whereas maximum compatibility prefers
the second (99 compatible characters rather than 80).
Which preference is scientifically justifiable?
The answer depends on the context. In the case of

bacterial pathogen surveillance, incompatible characters
are expected, and generally observed, to constitute only
a small fraction of the variable sites (see, e.g., [3] and
Results). The 100 variable sites in the example would
typically be accompanied by several million sites in the
genome that were not observed to vary at all, suggesting
that few if any sites will have changed more than once
by ordinary sequence divergence. On the other hand,
there are many ways in which misleading or incorrect
character states can come to pollute the data, and the
affected characters often require multiple changes of
state on any reasonable tree. Sources of problematic
characters include genetic recombination, misassembly
or misalignment due to unrecognized repeat sequences,
and contamination of samples by material from related
bacteria. Thus, the topology preferred by maximum
compatibility corresponds to what may be the simplest
explanation of the data: a single corrupted alignment
column, which conveys no useful information, along
with 99 variable sites with a single change of state.
Felsenstein [4] gave conditions for applicability of

maximum compatibility. Scotland and Steel [5] exhibited
conditions under which compatibility would be superior
to parsimony, and suggested application of compatibility
to morphological traits. An application to sequence data is
described by Gupta and Sneath [6].
In the simplest case for maximum compatibility, all

characters are binary (e.g., no more than two different
nucleotides occur in any alignment column) and there are
no ambiguous character states. Under these conditions,
pairwise compatibility among a set of characters guaran-
tees compatibility of the set as a whole with some tree [7].
The maximum compatibility problem then becomes a
maximum clique problem. Although the maximum clique
problem is NP-hard [8], existing algorithms can solve
instances of moderate size in reasonable time (reviewed in
[9]), and various speed enhancements apply to the type of
instance involved in this phylogenetic application (e.g., the
graph is typically very densely connected because most
pairs of characters are compatible).
In practice, neither of these conditions holds. Charac-

ters are not always binary; a sequence column may con-
tain three or all four bases. Ambiguous states may occur.
Indeed these are abundant in the bacterial genome use
case (see, e.g., Results).
Failure of the first condition is of little consequence.

Under the conditions that make compatibility appealing,
only a small fraction of the variable sites are expected to
contain more than two bases, and those that do are
highly suspect. Non-binary sites are indeed very rare in

the motivating case of closely-related bacteria (see Re-
sults). These sites are simply discarded by the algorithm
presented here. The algorithm thus applies a modified
compatibility principle: maximize the number of charac-
ters that do not require more than one change of state.
Characters with more than two observed states can
never satisfy this criterion. This is the form of maximum
compatibility assumed by Felsenstein [4] when assessing
it from the perspective of maximum likelihood.
Ambiguous character states, on the other hand, cannot

be ignored or discarded. The algorithm presented here
nonetheless provides an exact solution to the modified
compatibility problem in the presence of ambiguities. It
solves a maximum clique problem and, if the result is
not a solution to the phylogenetic problem at hand, it-
eratively modifies the problem until such a solution is
reached. It then resolves ambiguities in the compatible
character set to the extent possible, and produces a cor-
responding phylogenetic tree with branch lengths.

Methods
Maximum compatibility algorithm
The algorithm described here solves a version of the
maximum compatibility problem. A character is said to
be compatible with a tree if, for some resolution of any
ambiguous states for that character, the character states
can be explained with at most one change of state on
that tree. A set of characters is said to be compatible if
there exists a tree with which all of them are compatible.
A maximum compatible set of characters is a compatible
set that is at least as large as any other compatible set.
The algorithm takes a nucleotide character matrix as
input and finds all maximum compatible character sets.
It then produces a strict consensus tree that reflects all
maximum compatible character sets.
The algorithm (Figs. 1 and 2) is based on a variant of

established algorithms for the maximum weight clique
(MWC) problem. Vertices of the usual maximum clique
problem are combined into a single weighted vertex
whenever they have identical patterns of compatibility
among the other vertices. Several modifications greatly
increase the speed of this core computation. The larger
algorithm handles various complications of ambiguous
character states. It produces a phylogenetic tree and
reports statistics on the dispositions of characters.
Optional output includes a list of the characters that
failed to meet the compatibility condition.

Data representation
Initial input consists of a nucleotide character matrix.
This may be a complete multiple sequence alignment,
but often only a discontiguous set of sequence posi-
tions is given, and their order is of no importance.
Each column of the matrix corresponds to a character

Cherry BMC Bioinformatics  (2017) 18:127 Page 2 of 12



(a sequence position), and each row corresponds to a
terminal node on the tree (e.g., a sequenced genome).
Allowed character states are the four DNA bases (A,
G, C, and T) and the ambiguity symbol N.
The columns of interest are those in which exactly

two of {A, G, C, T} occur, possibly along with occur-
rences of N. Columns with three or four unambiguous
bases would require more than one change of state re-
gardless of tree topology, and therefore are excluded.
Columns that contain only one unambiguous base do
not require any changes of state, and are also discarded.
Each column of interest specifies a split (a binary

partition) of the terminal nodes that may be ambiguous.
A column containing {A, G} (or any other unambiguous
pair) splits the terminal nodes unambiguously into two
sets in the obvious way. For a column with {A, G, N},
set membership is ambiguous for the rows containing N.
A (possibly ambiguous) split is represented by lower and

upper bounds on one of its two component sets, as illus-
trated in Fig. 3. Each bounding set is represented by a
sorted array of unsigned integers, each integer being the
index of a terminal node (equivalently, a row of the charac-
ter matrix). The choice of which set to take as the represen-
tative–e.g., the set of leaves with A at a particular position
or the complementary set with G–may be made arbitrarily,

and the algorithm may take the complement of a set
when it is convenient to do so. The operation of
complementation of an ambiguous set consists of
interchanging the upper and lower bounds and com-
plementing each of them.
Columns corresponding to the same ambiguous split

are combined and represented as a split with an associ-
ated column count. The resulting collection of ambigu-
ous splits with counts contains all of the information
used in subsequent steps.

Fig. 1 Outline of the overall algorithm

Fig. 2 The recursive maximum weight clique algorithm. A\B indicates
the set difference between A and B, i.e., the set of all elements of A
that are not elements of B. N(v) indicates the set of all vertices that are
neighbors of (i.e., compatible with) vertex v. wt(x) indicates the weight
of a vertex or the sum of the weights of a set of vertices. R[i] indicates
the index of the end of the range of vertices following vi that share its
pattern of conflicts with all vertices vj with j > i (see text)

Cherry BMC Bioinformatics  (2017) 18:127 Page 3 of 12



Pairwise compatibilities
Pairwise compatibilities are determined for all pairs of
splits present in the data. Two splits represented by X
and Y are compatible if, and only if, at least one of four
conditions holds:

1. The upper bound on X is a superset of the lower
bound on Y.

2. The lower bound on X is a subset of the upper
bound on Y.

3. The lower bound on X and the lower bound on Y
are mutually exclusive (their intersection is the null
set).

4. The upper bound on X and the upper bound on Y
are jointly exhaustive (their union is the universal
set, i.e., the set of all terminal nodes).

In Fig. 3, for example, condition 1 is met, but none of
the others holds.
Note that if any of these conditions is met, any other is

met under complementation of X, complementation of Y,
or complementation of both. They represent a single
underlying condition that can manifest in four ways, de-
pending on two arbitrary choices between complementary
sets as representatives of the two splits. Condition 1 is obvi-
ously a sufficient condition for some set within the bounds
of X to be a superset of some set within the bounds of Y. It
is also a necessary condition: if the superset relation holds
between any such sets, it must hold between the largest
possible value for X and the smallest for Y. The disjunction

of the four conditions therefore corresponds to the possibil-
ity of resolving ambiguities such that the resulting unam-
biguous splits are compatible, i.e., at least one member of
each split is a subset of one member of the other split.
The compatibility condition given above means that

some resolution of the ambiguities in X is compatible with
some resolution of the ambiguities in Y. It does not imply
that all resolutions of X are compatible with all, or even
some, resolutions of Y. Thus, a set of splits that are pair-
wise compatible in this sense are not necessarily mutually
compatible: there may be no resolution of all ambiguities
that preserves all pairwise compatibilities, and (equiva-
lently) no tree topology that is compatible with the entire
set. On the other hand, the compatibility constraints put
on one split by another allow resolution of much ambigu-
ity once a mutually compatible set has been found.

Preprocessing
Although the matrix of pairwise compatibilities de-
scribed above could be used directly as the connectivity
matrix for a maximum weight clique problem, several
intervening steps allow for greatly improved speed.
Distinct splits may exhibit identical patterns of com-

patibility with the other splits present in the data
(equivalently, different rows of the compatibility matrix
may be identical to one another). These are combined
for the purpose of finding a maximum weight clique,
which necessarily contains either all or none of them.
This procedure can greatly reduce the size of the prob-
lem to be solved.

Fig. 3 Illustration of treatment of ambiguous character states. Two nucleotide characters having ambiguities (top left) are represented by pairs of
sets (top right). The column designated “X” is represented by upper and lower bounds on the set of rows with “T”, although it could instead be
represented by the set with “A”. Similarly, “Y” is represented in terms of the rows with “C”. The result of disambiguation using only information
from this pair is shown at the bottom, including the implied effect on the nucleotide character states

Cherry BMC Bioinformatics  (2017) 18:127 Page 4 of 12



Next, a greedy algorithm is run to obtain an approxi-
mate solution to the problem. In each iteration, a vertex
with the largest total weight of conflicts with the
remaining vertices is removed from the set until no con-
flicts remain. This procedure serves several purposes.
First, the resulting clique provides a lower bound on the
weight of the optimal solution. This bound allows the
exact algorithm to run more quickly by rapidly rejecting
families of solutions that could not possibly be as good
as the approximate solution. The bound also allows up-
front removal of vertices that conflict with too many
columns to be part of an optimal solution, which may in
turn allow for further consolidation of vertices with
identical conflict patterns. It also allows identification of
vertices that must be included in any optimal solution;
these are marked for inclusion and removed from the
problem. Second, the greedy algorithm provides an
ordering of the vertices that can greatly increase the
speed of the exact algorithm: vertices are presented in
order of removal, followed by the vertices that form the
remaining clique. This ordering is broadly similar to that
employed by [10] in that vertices with lower connectivity
(more conflicts) tend to come earlier.

Problem size reduction
The size of the problem to be solved is further reduced
before an exact solution is sought. Vertex coloring pro-
vides, for every vertex, an upper bound on the weight of a
clique that contains it [11]. Together with the lower
bound on the MWC, this information allows elimination
of many vertices from consideration before the main com-
putation is performed. A more drastic reduction is
achieved by consideration of weights. If the weight of a
vertex exceeds the combined weight of the vertices that
conflict with it, the first vertex must be included in any
maximum weight clique and the conflicting vertices must
be absent from it. This is so because any clique not con-
taining the first vertex would be made larger in weight by
addition of the first vertex and removal of any vertices that
conflict with it. Thus, several vertices can be removed
from the problem; one is recorded as necessarily included,
and the others are discarded. This procedure is repeated
until no additional vertices can be removed.
If the problem remains sufficiently large, a further re-

duction is applied, based on an extension of the reason-
ing given above. Any subset of a clique, including the set
of members that conflict with a particular vertex, must
itself be a clique. Thus, a vertex is recognized as neces-
sarily included in any MWC, and the vertices that con-
flict with it are removed from consideration, if the first
vertex outweighs all cliques that can be formed from the
conflicting vertices. This determination is made using a
modified version of the exact MWC algorithm that
returns as soon as it finds a clique of sufficient weight.

This can be much faster than finding the MWC, whose
weight may far exceed the required minimum.
Size reduction may enable further grouping of

columns on the basis of shared patterns of conflict. This
additional grouping may in turn allow additional size re-
duction. Thus, the combination of preprocessing (which
includes grouping) and size reduction is performed itera-
tively until no further reduction occurs (lines 6–10).

Exact maximum weight clique algorithm
Maximum weight cliques are found by a version of the
algorithm of Carraghan and Pardalos [10] (see [12],
Algorithm 1, for pseudocode), adapted to the weighted
variant of the maximum clique problem (Fig. 2). When
there is more than one maximum weight clique, this ver-
sion returns all of them. Branch cuts may be performed
based on upper bounds on clique weight calculated in
either of two ways described below. Several modifica-
tions increase the speed of the algorithm:

� As noted above, a greedy algorithm provides a
vertex ordering that speeds computation.

� The lower bound on maximum clique weight,
provided by the greedy solution, greatly speeds the
computation.

� An additional cut condition is applied to the
iterative removal of vertices (lines 61–63): when the
weight of the first vertex in a candidate list exceeds
the total weight of its conflicting vertices within that
list, there is no need to continue beyond the current
iteration. This is so because subsequent iterations
consider only cliques that do not contain the first
vertex, but any MWC contained in the candidate list
must include the first vertex under these conditions
(because otherwise addition of the first vertex and
removal of conflicting vertices must yield a clique of
larger weight).

� A vertex may be immediately followed in the
ordering by one or more vertices that share its
pattern of connectivity to all other vertices that
come after it. At the point in the algorithm where
the first remaining vertex is removed from the
candidate set and provisionally included in a clique,
any such following vertices that remain in the
candidate set are removed and considered for
inclusion along with it (lines 58–59). This is justified
because any MWC of the candidate set that
contains the first vertex must contain these
additional vertices as well, since it would otherwise
be possible to add them without introducing
conflicts, yielding a clique with larger weight.

Branch cuts may also be based on vertex coloring, essen-
tially as described by Tomita and Yamada [11]. If the upper

Cherry BMC Bioinformatics  (2017) 18:127 Page 5 of 12



bound on clique weight calculated for a candidate set is too
low to allow the current best solution to be equaled, the
branch is terminated (lines 50–55). Otherwise, the margin
by which the upper bound exceeds the requirement is
recorded. Because it is costly, an upper bound calculation is
not performed again until the decrease in candidate weight,
combined with any increase in the maximum observed
clique weight, exceeds this margin.
When this option is in force, a coloring is calculated

for each terminal sequence of vertices before the main
algorithm is run. The algorithm then uses the appropri-
ate coloring according to the first vertex in the subse-
quence that it is evaluating. Compared to the use of a
single coloring throughout, this approach yields gener-
ally tighter bounds and hence greater speed.
An alternative approach can provide tighter upper

bounds and hence increased speed. The usual approach
using vertex coloring considers only conflicts among
nodes in the same color class. The alternative described
here incorporates some of the remaining conflicts, which
involve vertices in different color classes. The color classes
are arranged into a tree, constructed so that pairs of clas-
ses containing vertices with “important” conflicts—those
involving the vertices with highest weight in their color
classes and overall—tend to be adjacent in the tree (see
below). For a given set of vertices, the algorithm calculates
the maximum weight of any subset that respects all con-
flicts between vertices in tree-adjacent classes in addition
to within-class conflicts. This is accomplished through
dynamic programming. For any color class, n + 1 scores
are calculated, where n is the number of vertices in that
class. These scores correspond to the n + 1 choices of
which vertex, if any, to include from that class. Each score
represents the maximum weight, given that choice, of a
subset that satisfies the constraints but includes only
nodes from the subtree defined by that color class. The
score is set to zero for any vertex not present in the set
under evaluation. Scores for all classes are calculated re-
cursively, and the maximum score for the root of the tree
is the desired overall maximum. Each such evaluation is
costlier than the usual coloring-based calculation, but it
can yield much tighter upper bounds, and hence earlier
branch cuts and dramatic improvements in overall speed.
A color class tree is constructed as follows for each set

of color classes (and hence for each terminal sequence
of vertices) before the main algorithm is run. The color
classes are first ordered by decreasing maximum
member weight. They are then added to the tree by
alternation of these steps:

1. The first remaining (not yet added) color class is
added to the tree. If it is the first class to be added,
it becomes the root. Otherwise, it is attached as a
child of the root.

2. Any remaining classes whose highest-weight member
conflicts with the highest-weight member of the class
added in (1) are added as children of that class. The
added children are then treated, in order, in the same
way, so that they may acquire children of their own
and more distant descendants.

A preference for enforcement of “important” conflicts,
as defined above, is accomplished by step 2 in conjunc-
tion with the class ordering.
By default, the algorithm chooses whether to calculate

upper bounds, and, if so, by which method, on the basis
of the size of the problem. The method used can also be
specified by the user.

Disambiguation
The above procedure yields a collection of splits that
generally contain ambiguities. Ambiguities in a split may
often be resolved by constraints imposed by other splits
in the collection. Ambiguities are resolved to the extent
possible by an iterative pairwise process, and only those
splits that are fully resolved by this process impose splits
on the computed phylogenetic tree or contribute to the
lengths of its branches.
Consider a pair of possibly ambiguous splits, repre-

sented by set ranges X and Y. X may resolve some ambi-
guities in Y, and vice versa, when exactly one of the four
compatibility conditions (see above) holds. Suppose, for
example, that only condition (1) holds. This implies that,
on any consistent resolution of ambiguities, X is a superset
of Y. It follows that Y can be no larger than the upper
bound on X. We may, therefore, obtain a stricter upper
bound on Y, namely the intersection of the original upper
bound on Y and the upper bound on X. Similarly, the
lower bound on X is replaced by its union with the lower
bound on Y. Figure 3 illustrates the application of this rule
and the corresponding implicit effects on ambiguous
nucleotide states. Analogous disambiguation rules are
applied for the other three compatibility conditions. Like
the compatibility conditions themselves, these four rules
are in reality a single underlying rule applied to different
representations of the data. These operations correspond
to Meacham’s [13] second rule for partial splits.
The pairwise disambiguation procedure is performed

iteratively on pairs of splits until no further disambigu-
ation is possible. If this condition is reached without the
introduction of any pairwise incompatibilities, the
disambiguated splits are converted to a phylogenetic tree
with branch lengths (or contribute to a consensus tree).
If a pairwise inconsistency does arise, a modified MWC
problem is solved, as described next.
When ambiguities are not completely resolved, there

may be total splits implied by the data that are not
recovered by pairwise disambiguation. For the data on

Cherry BMC Bioinformatics  (2017) 18:127 Page 6 of 12



which the algorithm has been tested, the vast majority of
ambiguous splits are fully resolved (see Results), so there
are few, if any, of these. Nonetheless, alternative proce-
dures may be worth pursuing.

Handling false solutions
As noted above, in the presence of ambiguities a max-
imum weight clique need not be a solution to the max-
imum compatibility problem: there may be no way to
resolve all ambiguities such that pairwise compatibility
remains intact. The disambiguation procedure may there-
fore give rise to incompatibilities. When this occurs for all
of the cliques found, it is necessary to find a different can-
didate solution to the compatibility problem. This is done
by solving a modified instance of the MWC problem.
To understand how this situation is handled by the al-

gorithm, it is helpful to consider a correct but inefficient
means by which ambiguities could have been handled.
In this impractical approach, each ambiguous split con-
taining n ambiguities is expanded into all 2n unambigu-
ous possibilities that it represents. These are marked as
incompatible with one another, so that at most one reso-
lution of any ambiguous split is included in any clique.
Other compatibilities are determined as above. Solution
of the resulting maximum weight clique problem yields
a solution to the maximum compatibility problem.
Such a procedure would be practical only if ambigu-

ities were rare and reasonably evenly distributed across
matrix columns. When some columns contain many
ambiguities, the number of vertices needed to represent
all possibilities becomes prohibitively large. However,
limited expansion of ambiguities, guided by the incom-
patibilities that arose in the course of disambiguation,
allows reasonably rapid calculation of another candidate
solution, as described below.
Suppose that disambiguation produces pairwise in-

compatibilities. This occurrence identifies at least one
pair of splits that were originally compatible (since they
were in the maximum weight clique) but became incom-
patible in the course of disambiguation. Expansion of
just these two splits into their component possibilities
would guarantee a different outcome: if solution of the
modified maximum weight clique problem results in any
incompatibilities, these will involve different splits,
which can then also be expanded. Furthermore, the
acquired incompatibility can be attributed to subsets of
ambiguities in the original pair whose resolution
destroyed one or more compatibility conditions. Sup-
pose, for example, that the two original ambiguous sets
X and Y satisfied only compatibility condition 1, and that
the disambiguation process yields incompatible restric-
tions X’ and Y’. Then the implicated ambiguous
elements for X are those absent from the upper bound
of X’ but present in the lower bound of Y’. These are

precisely those elements whose exclusion from X’ make
it too small to be a superset of any resolution of Y’, so
that condition 1 is not satisfied.
Thus, complete expansion of an implicated split into

2n unambiguous possibilities is not necessary. In fact, ex-
pansion into just two possibilities that resolve only one
ambiguous element may prevent the conflict and avert a
costly combinatorial explosion. Therefore, for each split
in a conflicting pair the algorithm chooses one element
for expansion (namely, the smallest implicated index). If
there are multiple MWCs, however, they may implicate
different elements of the same split. In general, then, a
split is expanded into 2m possibilities, with m < = n. If m
< n, these possibilities are themselves ambiguous (each
contains n–m ambiguities). Incompatibilities in solutions
of the modified MWC instance will necessary involve
other splits or different ambiguities in these splits.
The above procedure designates one or two splits for

expansion at certain ambiguities. Disambiguation is then
attempted on what remains of the clique after these
splits are removed, and the procedure is repeated until
no incompatibilities remain (lines 13–20). This is not
necessary for correctness, but may identify additional
splits for expansion without an additional MWC search
and hence improve performance. The result is a set of
one or more ambiguous splits that are to be partially
expanded with respect to certain designated ambiguities.
If solution of the modified problem also yields incom-

patibilities upon disambiguation, splits/ambiguities are
again designated for expansion and the process is
repeated. Among the splits to be expanded may be the
products of previous expansions. Iteration (lines 3–32)
must eventually yield a legitimate solution to the max-
imum compatibility problem. In practice this requires at
most a few iterations and only modest enlargement of
the problem, and computations complete in reasonable
times.
When pairwise disambiguation succeeds without con-

flict, the splits may nonetheless lack mutual compatibility.
This situation has not been encountered with real data
during the development of the algorithm. Nonetheless,
the algorithm checks every candidate solution by seeking
a complete and consistent resolution of all ambiguities,
the existence of which ensures mutual compatibility. First,
any of the remaining ambiguous splits that can be
resolved to singletons (splits corresponding to terminal
branches) are so resolved, eliminating the possibility of
conflicts involving them. Second, any ambiguous splits
that can be resolved to unambiguous splits already in the
set are resolved in that way. This procedure cannot intro-
duce new conflicts, so it preserves mutual compatibility.
Finally, remaining incompatibilities are resolved by itera-
tively resolving one ambiguous element arbitrarily and
performing pairwise disambiguation on the modified set.

Cherry BMC Bioinformatics  (2017) 18:127 Page 7 of 12



Iteration proceeds until there are no ambiguities
remaining or a conflict arises.
A conflict at this stage is treated much like a conflict

arising in the earlier disambiguation of the original set:
one or both of the splits involved are marked for partial
expansion in a subsequent MWC search (line 25). How-
ever, when there are multiple maximum cliques, a conflict
at this stage for any of those cliques mandates a subse-
quent search, even if some other solutions proceed with-
out conflict (line 26). This is because the search for a
compatible resolution of all ambiguities is not guaranteed
to succeed even if one exists. It has not been observed to
fail, except on artificial data constructed to make it do so,
but the possibility is handled appropriately.
If no conflict arises, the result is a complete resolution

of all ambiguities that is pairwise compatible and hence
mutually compatible. This resolved set serves as a proof
of the mutual compatibility of the original set. A tree
corresponding to the fully resolved set may optionally be
produced as auxiliary output. However, it is not used for
the main tree, which is based on pairwise disambigu-
ation results.

Multiple maximum cliques
An instance of the maximum clique problem may admit
multiple solutions. The exact search described here is ex-
haustive and may yield more than one clique of the same
size. All of the solutions are evaluated for mutual compati-
bility as described above. Any incompatibilities that arise
from different solutions are combined appropriately for
determining any subsequent ambiguity expansions. If one
or more solutions are found to possess mutual compatibil-
ity, these represent the largest sets of mutually compatible
columns, provided that all of the other solutions produced
incompatibilities during pairwise disambiguation. The
pairwise-disambiguated maximum compatible sets are
then used for tree construction.
Although a tree can be derived from each such result,

by default they are combined to produce a consensus
tree. The consensus tree contains exactly those splits
that are found in all of the solutions. The length of the
branch corresponding to a split is the minimum of the
split’s total count among the solutions.

Implementation
The algorithm was implemented in C++ and Python,
with an interface between the two generated by SWIG
[14]. It was developed under Linux. Source code and
build instructions are available at [15].

Bacterial sequence data
The algorithm was assessed using bacterial nucleotide
character matrices derived from whole-genome sequence
data. These character matrices were produced by the

NCBI pathogen detection pipeline. Information about
this pipeline can be found at [16] and [17]. The charac-
ter matrices analyzed are available at [15].

Maximum parsimony trees
Maximum parsimony trees were built with tnt (Willi
Hennig Society edition) [18]. One hundred replications
were performed with the xmult command, with five runs
each of the parsimony ratchet. A consensus tree was
then built after trees were collapsed with TBR.

Results
Application of maximum compatibility to bacterial
genomes
The algorithm described here was applied to Salmonella
enterica data generated by the NCBI pathogen detection
pipeline. Data consisted of nucleotide character states
for sets of Salmonella genomes (hundreds or thousands
of variable sites for up to 1854 genomes). Each set con-
sists of closely-related genomes (largest tree distances
between isolates are approximately 150–250 nucleotide
differences), and is therefore referred to as a cluster.
Character states were derived from raw sequence reads
where available, but some genome assemblies were also
included. Character states had been filtered to remove
several kinds of potentially problematic sites: those with
large numbers of conflicting sequence reads, those with
low coverage, certain repeat sequences, and sites in
regions with high densities of sequence differences (sus-
pected to represent recombination events, inaccurate
sequence, or other problems). Table 1 gives the run
times for the twenty largest clusters, along with informa-
tion about the input data and the disposition of columns
in the tree reconstruction process.
Tree computation was rapid. For the largest cluster,

which contained 1854 isolates and had 4933 informative
characters, the algorithm took just under 10 s to run
using a single core on commodity hardware (Intel Xeon
E5-2650 @2.6GHz). Calculating all 20 trees took a total
of less than 30 s.
In all cases the maximum compatible set included well

over 90% of the variable characters. After the pairwise
disambiguation process, the vast majority of these were
completely unambiguous. These facts lend support to
the applicability of maximum compatibility, and suggest
that any loss of information due to genuine homoplasy
or inadequate disambiguation is small.
In the majority of the columns that could not be com-

pletely disambiguated, one of the unambiguous bases
was present in only one row, making those columns un-
informative for tree topology. This is true of columns in
general (much of the total tree length is in the terminal
branches), but is disproportionately common among
those whose ambiguities are not all resolvable. Of the

Cherry BMC Bioinformatics  (2017) 18:127 Page 8 of 12



Ta
b
le

1
Su
m
m
ar
y
of

re
su
lts

an
d
pe

rfo
rm

an
ce

on
Sa
lm
on

el
la

da
ta

C
lu
st
er

nu
m
be

r
N
um

be
r
of

G
en

om
es

C
ol
um

ns
in

In
pu

t
M
ax
im

um
C
om

pa
tib

le
Se
t(
s)

A
m
bi
gu

iti
es

in
Bi
na
ry

C
ol
um

ns
C
ol
um

ns
N
ot

Fu
lly

D
is
am

bi
gu

at
ed

C
ol
um

ns
Re
pr
es
en

te
d

on
Tr
ee

Ex
ec
ut
io
n

tim
e
(s
ec
.)

Va
ria
bl
e

Bi
na
ry

In
fo
rm

at
iv
e

Si
ze

N
um

be
r

Fr
ac
tio

n
A
m
bi
gu

ou
s

St
at
es

Fr
ac
tio

n
of

C
ol
um

ns
w
ith

A
m
bi
gu

iti
es

To
ta
l

In
fo
rm

at
iv
e
an
d

N
on

-r
ed

un
da
nt

N
um

be
r

Fr
ac
tio

n
of

va
ria
bl
e

Fr
ac
tio

n
of

bi
na
ry

1
18
54

12
23
7

12
01
3

49
33

11
55
1

32
0.
4%

72
.1
%

14
0.
5

14
11
41
0.
5

93
.2
%

95
.0
%

9.
77

2
15
86

14
22
9

14
18
4

58
51

13
92
3

2
0.
2%

43
.3
%

15
3

19
13
77
0

96
.8
%

97
.1
%

3.
92

3
94
3

71
30

71
21

23
57

70
32

2
1.
4%

23
.7
%

16
8.
5

2
68
63
.5

96
.3
%

96
.4
%

1.
4

4
84
3

24
39

24
34

12
06

24
04

2
0.
3%

8.
9%

11
0

23
93

98
.1
%

98
.3
%

0.
48

5
82
6

61
43

61
34

19
64

60
14

1
0.
9%

53
.6
%

18
9

3
58
25

94
.8
%

95
.0
%

1.
34

6
81
8

82
71

82
57

25
24

81
82

1
0.
5%

41
.1
%

19
0

36
79
92

96
.6
%

96
.8
%

1.
43

7
45
0

60
31

60
23

21
58

59
73

2
0.
7%

42
.6
%

93
0

58
80

97
.5
%

97
.6
%

0.
74

8
40
3

63
23

63
17

23
86

62
78

1
0.
7%

39
.5
%

76
0

62
02

98
.1
%

98
.2
%

0.
6

9
37
9

51
71

51
64

17
14

50
02

1
1.
2%

56
.4
%

14
8

0
48
54

93
.9
%

94
.0
%

0.
78

10
27
8

11
56

11
56

40
5

11
45

1
0.
6%

10
.6
%

8
1

11
37

98
.4
%

98
.4
%

0.
26

11
25
9

42
23

42
21

12
79

42
01

2
0.
4%

10
.6
%

24
0

41
77

98
.9
%

99
.0
%

0.
35

12
21
5

35
38

35
33

12
02

35
17

1
0.
8%

16
.4
%

39
1

34
78

98
.3
%

98
.4
%

0.
33

13
21
0

28
79

28
67

68
7

28
24

2
0.
7%

11
.1
%

18
0

28
06

97
.5
%

97
.9
%

0.
29

14
19
5

26
97

26
95

12
23

26
84

1
1.
8%

44
.4
%

52
0

26
32

97
.6
%

97
.7
%

0.
42

15
19
3

20
86

20
84

78
6

20
65

2
1.
1%

12
.4
%

39
0.
5

20
26

97
.1
%

97
.2
%

0.
46

16
19
2

90
3

90
2

27
6

87
4

4
4.
7%

23
.5
%

47
.5

3
82
6.
5

91
.5
%

91
.6
%

0.
26

17
19
0

26
40

26
38

98
4

26
03

1
1.
4%

12
.0
%

51
2

25
52

96
.7
%

96
.7
%

0.
29

18
17
1

10
35

10
33

35
3

10
23

1
0.
5%

8.
2%

6
0

10
17

98
.3
%

98
.5
%

0.
23

19
17
1

97
9

97
9

33
7

96
8

1
1.
7%

21
.2
%

30
2

93
8

95
.8
%

95
.8
%

0.
26

20
16
8

27
38

27
38

61
2

27
08

1
1.
3%

11
.9
%

44
1

26
64

97
.3
%

97
.3
%

0.
28

So
m
e
co
un

ts
ar
e
av
er
ag

es
ov

er
m
ul
tip

le
m
ax
im

um
co
m
pa

tib
le

se
ts
,a
nd

m
ay

th
er
ef
or
e
be

no
n-
in
te
gr
al

Cherry BMC Bioinformatics  (2017) 18:127 Page 9 of 12



remaining such columns, the majority admit resolution
to the same split as some fully disambiguated column,
so they cannot imply any split that is not known from
another column. Thus, only a very small number of
columns not fully disambiguated are both informative
and non-redundant.
The algorithm was also applied to data for other bac-

teria produced by the NCBI pathogen detection pipeline.
Additional file 1: Table S1 shows results for all clusters
with 100 or more members, after removal of isolates
with more than 10% ambiguities for some taxa. These
clusters represent eight genera belonging to a variety of
bacterial groups. The results are similar to those for Sal-
monella enterica. Execution times were at most 1.2 s,
and the vast majority of variable sites are compatible
with the inferred trees and contribute to branch lengths.

Maximum parsimony trees
Trees for each Salmonella cluster were also calculated by
maximum parsimony for the purpose of comparison.
These were similar in topology to the maximum compati-
bility trees, but for some clusters differed significantly.
An example with significant differences is cluster 1.

The compatibility tree for this cluster displays 2786
splits, and the parsimony tree displays 2822. Because
1854 of these correspond to terminal branches, the
numbers of informative splits are 932 and 968. Of these,
74 found on the compatibility tree are absent from the
parsimony tree, and 110 found on the parsimony tree
are absent from the compatibility tree. If we restrict at-
tention to splits on one tree that conflict with those on
the other (as opposed to merely resolving a multifurca-
tion on the other tree), these numbers are 69 for com-
patibility and 79 for parsimony. These differences
represent a significant fraction of the informative splits.
Analysis revealed that several nucleotide sites are

highly homoplastic with respect to both trees. These
generally required fewer changes on the parsimony tree
than the compatibility tree. For example, the most
homoplastic site according to the compatibility tree
requires 59 changes, but the same site requires only 28
changes on the parsimony tree.
It is not surprising that parsimony arrived a tree top-

ology that decreases the number of changes required.
However, the requirement for 28 changes even according
to parsimony, where most variable sites require just one
change, suggests that this site is unreliable and should
be ignored. Compatibility effectively ignores it, as it
counts the 59 changes as no worse than two, whereas
parsimony accommodates it, counting the reduction
from 59 to 28 as a major improvement that would justify
the loss of compatibility with multiple sites.
Additional sites show a similar pattern. The next most

homoplastic sites according to compatibility require 54,

49, 47, 41, and 38 changes. On the parsimony tree, these
counts are also reduced drastically, to 24, 34, 26, 31, and
30, respectively.
Further investigation traced most of the highly homo-

plastic sites to the minority of bacterial isolates for
which raw sequence reads were unavailable. For these
isolates there was no opportunity to remove uncertain
base calls on the basis of read alignments, and the ana-
lysis relied on whatever assembly method had been used
by the sequence submitters. Removal of these isolates
eliminated most of the highly homoplastic sites and
brought the compatibility and parsimony topologies into
near agreement. This is additional evidence that the
highly homoplastic sites are unreliable and should be ig-
nored, as effectively done under maximum compatibility,
and therefore that the compatibility tree is preferable to
the parsimony tree.

Effects of addition of suspect character data
A second type of comparison between compatibility and
parsimony considers the effect of allowing normally
excluded nucleotide sites into the input data. In a series
of computational experiments, randomly chosen posi-
tions that had been removed by one form of filtering
were re-introduced into the analysis, and the effects on
compatibility and parsimony trees were compared.
Removal of these sites had been based on identification
of sequence differences that cluster on the genome. Such
clusters can result from various biological events and
technical problems and are likely to be misleading.
The starting point for addition of these characters con-

sisted of those sites that were compatible with both the
original compatibility tree and the original parsimony
tree. For this set of sites, the two methods yield the same
tree topology, which is a consensus between the two
original trees. This tree serves as a common basis of
comparison for the effects of added sites on compatibil-
ity and parsimony. Any split that conflicts with this tree
also conflicts with the original trees produced by both
methods.
Results are shown in Fig. 4 for clusters 2 and 6, the

two clusters most subject to the effects of the suspect
sites (as judged by their effect on compatibility trees, so
as to avoid any bias against parsimony). As more ran-
domly chosen suspect sites are added, the inferred tree
topologies increasingly change. Parsimony is clearly
more susceptible to the effects—presumably detrimenta-
l—of the added sites, whereas compatibility is much
more robust to them.

Algorithm comparisons
The Phylip phylogentic software package [19] includes a
program, dnacomp, for maximum compatibility tree re-
construction from nucleotide data. Applied to the twenty

Cherry BMC Bioinformatics  (2017) 18:127 Page 10 of 12



Salmonella clusters (binary characters only) with the
default parameters, dnacomp took much longer to run
than the algorithm described here. Run times ranged
from several seconds for the smallest clusters (compared
to several tenths of a second) to nearly ten hours for the
largest (compared to approximately ten seconds). In
several cases, dnacomp results fell slightly short of the
true compatibility maximum.
The techniques described here for reducing problem

size (see Methods) often reduce the phylogenetic prob-
lem to a trivially small (or even zero-size) instance of the
maximum weight clique problem. In cases where a non-
trivial instance remained, the recursive MWC algorithm
described here, with either use of vertex coloring, was

found to be much faster than the algorithm of Östergård
[20, 21] for solving the reduced problem. This perform-
ance advantage is presumably dependent on characteris-
tics of the problem instances that occur in this
application. It is noteworthy, however, that the reduced
instances are not necessarily very densely connected.

Discussion
The algorithm described here computes an exact max-
imum compatibility consensus tree for binary characters
in the presence of ambiguity. The computation is rapid
for character data with the intended properties. For input
derived from whole-genome sequencing of closely-related
bacteria, consisting of up to several thousand informative
sites for nearly 2000 genomes, trees were computed in a
few seconds or less. Compatibility is thus a computation-
ally feasible phylogenetic method for such data.
The speed of the algorithm will vary with attributes of

the input data besides its size. As expected for an NP-
hard problem, worst-case run time can be long for large
problem sizes. The high speed of the bacterial tree com-
putations is made possible by the nature of the biological
input data. Most important would seem to be the high
density of the compatibility graph, i.e., the fact that vast
majority of character pairs are compatible.
The main motivation for applying compatibility in this

context is to make phylogenetic inference more robust
to problematic sequence positions. Computational ex-
periments confirmed that compatibility is more resistant
than parsimony to the effects of misleading sequence
positions on tree topology. These experiments were
based on the effects of actual sequence data that is
normally identified as suspicious and discarded.
Maximum compatibility may be compared to another

approach to misleading sequence positions. Some ana-
lyses of bacterial genomes have discarded any positions
that are incompatible with an initial tree calculated by a
more commonly used phylogenetic method [3, 22]. This
procedure may be helpful, but it is not a substitute for
the benefits of maximum compatibility. If the initial tree
topology is incorrect due to problematic sites, the set of
positions chosen for retention by this procedure will also
be incorrect. Re-computation of the tree based on this
misidentified subset does not remedy the situation. It
will, in fact, tend to reproduce the original flawed tree
topology or a less-resolved version of it (this outcome is
guaranteed, for example, under maximum parsimony).
With maximum compatibility, in contrast, identification
of potentially misleading sites is an integral part of deter-
mination of the tree topology, not a subsequent step that
is determined by a topology that may be corrupted by
those very sites.
Compatibility methods and whole-genome sequencing

appear to be particularly well matched. Compatibility is not

Fig. 4 Susceptibility of maximum compatibility and maximum parsimony
to the influence of suspect sequence data. The effect of adding 100, 300,
or 1000 columns of suspect data is shown for each method. Three
replicates (independent random selections of columns) are shown for
each number of columns. The topological difference between trees
reconstructed with and without the suspect columns is quantified by the
number of columns on either tree that are absent from the other and the
number on either tree that conflict with the other

Cherry BMC Bioinformatics  (2017) 18:127 Page 11 of 12



frequently used for analysis of nucleotide sequences,
perhaps because it is not often appropriate. It is most
applicable when most of the variable sites have changed just
once over the length of the true tree. In practice this means
that the vast majority of sequence positions do not vary in
the group under study, so that the number of useful charac-
ters will be small unless many nucleotide positions are
sequenced. Whole-genome sequencing provides data for
millions of positions, allowing for differentiation of closely
related isolates that are identical at all but a tiny fraction—-
but a reasonably large number—of nucleotide sites. It is,
however, subject to many sources of misleading character
states, including recombination events, unrecognized repeat
sequences, systematic sequencing errors, and contamin-
ation of sequence reads, that can overwhelm the truly
informative sites. Maximum compatibility provides robust-
ness against these phenomena.

Conclusions
The maximum compatibility algorithm presented here
rapidly computes phylogenies of closely-related bacteria
from genome sequence data. This application domain ap-
pears to conform to the assumptions of maximum com-
patibility: the vast majority of variable characters require
only one change of state on the phylogenetic tree. In the
presence of moderate levels of sequence ambiguity, the
method is able to resolve most ambiguous states. Com-
pared to maximum parsimony, the method is robust to
phylogenetically misleading nucleotide positions that can
be found in actual data. It may therefore be a preferred
method for an important class of phylogenetic problems.

Additional file

Additional file 1: Table S1. Summary of results and performance on
bacteria other than Salmonella. (PDF 311 kb)

Abbreviations
MWC: Maximum weight clique

Acknowledgements
I thank Richa Agarwala for providing the data on which the algorithm was
tested, and David Lipman for comments on the manuscript.

Funding
This research was supported by the Intramural Research Program of the NIH,
National Library of Medicine.

Availability of data and materials
Source code for the algorithm described here and the bacterial character
matrices analyzed are available at http://ftp.ncbi.nih.gov/pub/jcherry/compat/
.

Authors’ contributions
Not applicable.

Competing interests
The author declares that he has no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Received: 22 November 2016 Accepted: 1 February 2017

References
1. Le Quesne WJ. A method of selection of characters in numerical taxonomy.

Syst Zool. 1969;18:201–5.
2. Le Quesne WJ. Further studies based on the uniquely derived character

concept. Syst Zool. 1972;21:281–8.
3. Zhou Z, McCann A, Litrup E, Murphy R, Cormican M, Fanning S, et al.

Neutral genomic microevolution of a recently emerged pathogen,
Salmonella enterica serovar Agona. PLoS Genet. 2013;9(4):e1003471.

4. Felsenstein J. A Likelihood Approach to Character Weighting and What it
Tells us about Parsimony and Compatibility. Biol J Linn Soc. 1981;16:183–96.

5. Scotland RW, Steel M. Circumstances in which parsimony but not
compatibility will be provably misleading. Syst Biol. 2015;64:492–504.

6. Gupta RS, Sneath PHA. Application of the character compatibility approach
to generalized molecular sequence data: branching order of the
proteobacterial subdivisions. J Mol Evol. 2007;64:90–100.

7. McMorris FR. On the Compatibility of Binary Qualitative Taxonomic
Characters. Bull Math Biol. 1977;39:133–8.

8. Karp RM. Reducibility among combinatorial problems. In: Miller RE, Thatcher
JW, editors. Complexity of Computer Computations. New York: Plenum
Press; 1972. p. 85–103.

9. Wu Q, Hao JK. A review on algorithms for maximum clique problems. Eur J
Oper Res. 2015;242:693–709.

10. Carraghan R, Pardalos PM. An Exact Algorithm for the Maximum Clique
Problem. Oper Res Lett. 1990;9:375–82.

11. Tomita E, Yamada M. An algorithm for finding a maximum complete
subgraph. Conference Records of IECE (Technical Report of the National
Convention of IECE 1978). 1978. p. 8.

12. Östergård PRJ. A fast algorithm for the maximum clique problem. Discret
Appl Math. 2002;120:197–207.

13. Meacham CA. Theoretical and computational considerations of the compatibility
of qualitative taxonomic characters. In: Felsenstein J, editor. Numerical Taxonomy,
NATO ASI Series Vol. G1. Berlin: Springer-Verlag; 1983. p. 304–14.

14. SWIG website. http://www.swig.org/. Accessed 25 Oct 2016.
15. Source code and data from this article. http://ftp.ncbi.nih.gov/pub/jcherry/

compat/. Accessed 25 Oct 2016.
16. NCBI Pathogen Detection Homepage. http://www.ncbi.nlm.nih.gov/

pathogens/. Accessed 25 Oct 2016.
17. Klimke W. The NCBI Pathogen Analysis Pipeline to Support Real Time

Sequencing of Foodborne Pathogens (slides). http://www.slideshare.net/
ExternalEvents/the-national-center-for-biotechnology-information-ncbi-
pathogen-analysis-pipeline-to-support-real-time-sequencing-of-foodborne-
pathogens. Accessed 25 Oct 2016.

18. Goloboff P, Farris J, Nixon K. TNT: a free program for phylogenetic analysis.
Cladistics. 2008;24:774–86.

19. Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. 2005;
Distributed by the author. Department of Genome Sciences, University of
Washington, Seattle.

20. Östergård PRJ. A new algorithm for the maximum-weight clique problem.
Electron Notes Discrete Math. 1999;3:153–6.

21. Cliquer homepage. https://users.aalto.fi/~pat/cliquer.html. Accessed 25
Oct 2016.

22. Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, van der Linden M, et al.
Rapid pneumococcal evolution in response to clinical interventions.
Science. 2011;331(6016):430–4.

Cherry BMC Bioinformatics  (2017) 18:127 Page 12 of 12

dx.doi.org/10.1186/s12859-017-1520-4
http://ftp.ncbi.nih.gov/pub/jcherry/compat/
http://www.swig.org/
http://ftp.ncbi.nih.gov/pub/jcherry/compat/
http://ftp.ncbi.nih.gov/pub/jcherry/compat/
http://www.ncbi.nlm.nih.gov/pathogens/
http://www.ncbi.nlm.nih.gov/pathogens/
http://www.slideshare.net/ExternalEvents/the-national-center-for-biotechnology-information-ncbi-pathogen-analysis-pipeline-to-support-real-time-sequencing-of-foodborne-pathogens
http://www.slideshare.net/ExternalEvents/the-national-center-for-biotechnology-information-ncbi-pathogen-analysis-pipeline-to-support-real-time-sequencing-of-foodborne-pathogens
http://www.slideshare.net/ExternalEvents/the-national-center-for-biotechnology-information-ncbi-pathogen-analysis-pipeline-to-support-real-time-sequencing-of-foodborne-pathogens
http://www.slideshare.net/ExternalEvents/the-national-center-for-biotechnology-information-ncbi-pathogen-analysis-pipeline-to-support-real-time-sequencing-of-foodborne-pathogens
https://users.aalto.fi/~pat/cliquer.html

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Maximum compatibility algorithm
	Data representation
	Pairwise compatibilities
	Preprocessing
	Problem size reduction
	Exact maximum weight clique algorithm
	Disambiguation
	Handling false solutions
	Multiple maximum cliques
	Implementation

	Bacterial sequence data
	Maximum parsimony trees

	Results
	Application of maximum compatibility to bacterial genomes
	Maximum parsimony trees
	Effects of addition of suspect character data
	Algorithm comparisons

	Discussion
	Conclusions
	Additional file
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	References

