102 research outputs found

    Using natural resource inventory data to improve the management of dryland salinity in the Great Southern, Western Australia

    Get PDF
    The synoptic assessment of salinity risk and the likely costs and benefits associated with various management options is crucial to natural resource management decision-making in southern Australia. A variety of methods have been proposed and tested for assessing various aspects of salinity risks and costs, but no large region of Australia has ever had a comprehensive risk assessment across the range of biophysical and economic issues with forecasts of the effectiveness of different levels of intervention. This National Land and Water Resources Audit Implementation Project (referred to locally as Salt Scenarios 2020, or SS2020 for short) attempted to provide such an assessment (at a scale of around 1:100,000). The existing methods of monitoring and predicting salinity (based on variables derived from widely-available Landsat TM data and existing contour data; albeit with improved variable extraction from the DEMs) are being applied to the rest of the agricultural area of WA as part of the Land Monitor Project, funded in part by NHT. Collecting accurate contour data (2-metre) is a major part of the NHT project. This Audit project was proposed to allow other fundamental data sets, and especially groundwater levels from bore-hole data, to be used to significantly improve predictions in lower-rainfall areas as well as refine the predictions in the high rainfall areas. The Great Southern is an area of considerable economic and environmental value populated by 60,000 people. In 1996, it was estimated that about 30% of the cleared land and associated vegetation and water resources are at risk from becoming salt-affected over the next 30 years unless high-water use farming systems and farm forestry are adopted over large parts of the region(Ferdowsian et al., 1996). Four key questions arise with respect to the future of this region as affected by dryland salinity: •How large will the problem eventually be under current land practices? How large might it be in the year 2020? •What is at risk if the area under threat grows that large? •To what degree can we change the eventual extent of salinity with land use alternatives that are both feasible and available? •What are the costs and benefits of intervening with these alternative land uses? Ultimately, the SS2020 Project aimed to provide some guidance to state, regional and local planners and managers regarding salinity risk in the Great Southern. The analyses underpinning this guidance were based on similar data employed by NLWRA projects under Theme 2 – Dryland Salinit

    Counting flags in triangle-free digraphs

    Get PDF
    Motivated by the Caccetta-Haggkvist Conjecture, we prove that every digraph on n vertices with minimum outdegree 0.3465n contains an oriented triangle. This improves the bound of 0.3532n of Hamburger, Haxell and Kostochka. The main new tool we use in our proof is the theory of flag algebras developed recently by Razborov.Comment: 19 pages, 7 figures; this is the final version to appear in Combinatoric

    A multi-agency project of the Western Australian Salinity Action Plan supported by the Natural Heritage Trust

    Get PDF
    Land Monitor is a multi-agency project of the Western Australian Salinity Action Plan supported by the Natural Heritage Trust. It will provide land managers and administrators with baseline salinity and vegetation data for monitoring changes over time, and land height data from which contours accurate to two metre intervals can be produced. The Project will also provide estimates of areas at risk from secondary or future salinisation. Land Monitor will cover the 18 million hectares of agricultural area of south-west, Western Australia. Sequences of calibrated Landsat Thematic Mapper satellite images integrated with landform information derived from height data, ground truthing and other existing mapped data sets are used as the basis for monitoring changes in salinity and woody vegetation. Heights are derived on a 10m grid from stereo aerial photography flown at 1:40,000 scale, using soft-copy automatic terrain extraction (image correlation) techniques. Proposed Land Monitor products include salinity maps, predicted salinity maps, enhanced imagery, vegetation status maps and spectral / temporal statistics. These products will be available in a range of formats and scales, from paddock, farm to catchment and shire scales to suit customer needs

    The Land Monitor Project

    Get PDF
    The Land Monitor Project is providing information over the southwest agricultural region of WA. It is assembling and processing sequences of Landsat TM data, a new highresolution digital elevation model (DEM) and other spatial data to provide monitoring information on the area of salt-affected land, and on changes in the area and status of perennial vegetation over the period 1988-2000. Land Monitor is a multi-agency project of the Western Australian Salinity Action Plan supported by the Natural Heritage Trust. The Project will also providing estimates of areas at risk from secondary or future salinisation, based on the historical salinity maps and a set of landform variables derived from the high resolution DEM. Sequences of calibrated Landsat Thematic Mapper satellite images integrated with landform information derived from height data, ground truthing and other existing mapped data are used as the basis for monitoring changes in salinity and woody vegetation. Procedures for accurate registration and calibration were developed by CSIRO Mathematical and Information Sciences (CMIS), as were the data integration procedures for salinity mapping and prediction. For the DEM, heights are derived on a 10m grid from stereo aerial photography flown at 1:40,000 scale, using soft-copy automatic terrain extraction (image correlation) techniques. Land Monitor products include: high resolution DEMs; calibrated sequences of Landsat imgery; present and historical salinity maps; predicted salinity maps; maps of change in vegetation status and spectral/temporal statistics. These products are available in a range of formats and scales, from paddock to catchment and shire scales to suit customer needs

    A new generic open pit mine planning process with risk assessment ability

    Get PDF
    Conventionally, mining industry relies on a deterministic view, where a unique mine plan is determined based on a single resource model. A major shortfall of this approach is the inability to assess the risk caused by the well-known geological uncertainty, i.e. the in situ grade and tonnage variability of the mineral deposit. Despite some recent attempts in developing stochastic mine planning models which have demonstrated promising results, the industry still remains sceptical about this innovative idea. With respect to unbiased linear estimation, kriging is the most popular and reliable deterministic interpolation technique for resource estimation and it appears to remain its popularity in the near future. This paper presents a new systematic framework to quantify the risk of kriging-based mining projects due to the geological uncertainties. Firstly, conditional simulation is implemented to generate a series of equally-probable orebody realisations and these realisations are then compared with the kriged resource model to analyse its geological uncertainty. Secondly, a production schedule over the life of mine is determined based on the kriged resource model. Finally, risk profiles of that production schedule, namely ore and waste tonnage production, blending grade and Net Present Value (NPV), are constructed using the orebody realisations. The proposed model was applied on a multi-element deposit and the result demonstrates that that the kriging-based mine plan is unlikely to meet the production targets. Especially, the kriging-based mine plan overestimated the expected NPV at a magnitude of 6.70% to 7.34% (135 Mto151 M to 151 M). A new multivariate conditional simulation framework was also introduced in this paper to cope with the multivariate nature of the deposit. Although an iron ore deposit is used to prove the concepts, the method can easily be adapted to other kinds of mineral deposits, including surface coal mine

    The history of degenerate (bipartite) extremal graph problems

    Full text link
    This paper is a survey on Extremal Graph Theory, primarily focusing on the case when one of the excluded graphs is bipartite. On one hand we give an introduction to this field and also describe many important results, methods, problems, and constructions.Comment: 97 pages, 11 figures, many problems. This is the preliminary version of our survey presented in Erdos 100. In this version 2 only a citation was complete

    Single and repeated moderate consumption of native or dealcoholized red wine show different effects on antioxidant parameters in blood and DNA strand breaks in peripheral leukocytes in healthy volunteers: a randomized controlled trial [ISRCTN68505294]

    Get PDF
    BACKGROUND: Red wine (RW) is rich in antioxidant polyphenols that might protect from oxidative stress related diseases, such as cardiovascular disease and cancer. Antioxidant effects after single ingestion of RW or dealcoholized RW (DRW) have been observed in several studies, but results after regular consumption are contradictory. Thus, we examined if single or repeated consumption of moderate amounts of RW or DRW exert antioxidant activity in vivo. METHODS: Total phenolic content and concentration of other antioxidants in plasma/serum, total antioxidant capacity (TEAC) in plasma as well as DNA strand breaks in peripheral leukocytes were measured in healthy non-smokers A) before, 90 and 360 min after ingestion of one glass of RW, DRW or water; B) before and after consumption of one glass of RW or DRW daily for 6 weeks. DNA strand breaks (SB) were determined by single cell gel electrophoresis (Comet Assay) in untreated cells and after induction of oxidative stress ex vivo with H(2)O(2 )(300 μM, 20 min). RESULTS: Both RW and DRW transiently increased total phenolic content in plasma after single consumption, but only RW lead to a sustained increase if consumed regularly. Plasma antioxidant capacity was not affected by single or regular consumption of RW or DRW. Effects of RW and DRW on DNA SB were conflicting. DNA strand breaks in untreated cells increased after a single dose of RW and DRW, whereas H(2)O(2 )induced SB were reduced after DRW. In contrast, regular RW consumption reduced SB in untreated cells but did not affect H(2)O(2 )induced SB. CONCLUSION: The results suggest that consumption of both RW and DRW leads to an accumulation of phenolic compounds in plasma without increasing plasma antioxidant capacity. Red wine and DRW seem to affect the occurrence of DNA strand breaks, but this cannot be referred to antioxidant effects

    Optimal Control of Nonlinear Switched Systems: Computational Methods and Applications

    Get PDF
    A switched system is a dynamic system that operates by switching between different subsystems or modes. Such systems exhibit both continuous and discrete characteristics—a dual nature that makes designing effective control policies a challenging task. The purpose of this paper is to review some of the latest computational techniques for generating optimal control laws for switched systems with nonlinear dynamics and continuous inequality constraints. We discuss computational strategiesfor optimizing both the times at which a switched system switches from one mode to another (the so-called switching times) and the sequence in which a switched system operates its various possible modes (the so-called switching sequence). These strategies involve novel combinations of the control parameterization method, the timescaling transformation, and bilevel programming and binary relaxation techniques. We conclude the paper by discussing a number of switched system optimal control models arising in practical applications

    The control parameterization method for nonlinear optimal control: A survey

    Get PDF
    The control parameterization method is a popular numerical technique for solving optimal control problems. The main idea of control parameterization is to discretize the control space by approximating the control function by a linear combination of basis functions. Under this approximation scheme, the optimal control problem is reduced to an approximate nonlinear optimization problem with a finite number of decision variables. This approximate problem can then be solved using nonlinear programming techniques. The aim of this paper is to introduce the fundamentals of the control parameterization method and survey its various applications to non-standard optimal control problems. Topics discussed include gradient computation, numerical convergence, variable switching times, and methods for handling state constraints. We conclude the paper with some suggestions for future research
    corecore