23,949 research outputs found
Gravitational Anomaly and Hawking Radiation of Brane World Black Holes
We apply Wilczek and his collaborators' anomaly cancellation approach to the
3-dimensional Schwarzschild- and BTZ-like brane world black holes induced by
the generalized C metrics in the Randall-Sundrum scenario. Based on the fact
that the horizon of brane world black hole will extend into the bulk spacetime,
we do the calculation from the bulk generalized C metrics side and show that
this approach also reproduces the correct Hawking radiation for these brane
world black holes. Besides, since this approach does not involve the dynamical
equation, it also shows that the Hawking radiation is only a kinematic effect.Comment: 11 pages. v2: minor changes and references adde
Quantum Anomalous Hall Effect in HgMnTe Quantum Wells
The quantum Hall effect is usually observed when the two-dimensional electron
gas is subjected to an external magnetic field, so that their quantum states
form Landau levels. In this work we predict that a new phenomenon, the quantum
anomalous Hall effect, can be realized in HgMnTe quantum wells,
without the external magnetic field and the associated Landau levels. This
effect arises purely from the spin polarization of the atoms, and the
quantized Hall conductance is predicted for a range of quantum well thickness
and the concentration of the atoms. This effect enables dissipationless
charge current in spintronics devices.Comment: 5 pages, 3 figures. For high resolution figures see final published
version when availabl
Exciton gas transport through nano-constrictions
An indirect exciton is a bound state of an electron and a hole in spatially
separated layers. Two-dimensional indirect excitons can be created optically in
heterostructures containing double quantum wells or atomically thin
semiconductors. We study theoretically transmission of such bosonic
quasiparticles through nano-constrictions. We show that quantum transport
phenomena, e.g., conductance quantization, single-slit diffraction, two-slit
interference, and the Talbot effect, are experimentally realizable in systems
of indirect excitons. We discuss similarities and differences between these
phenomena and their counterparts in electronic devices.Comment: (v2) Updated title, text, and references; 12 pages, 9 figure
Pinning and Tribology of Tethered Monolayers on Disordered Substrates
We study the statistical mechanics and dynamics of crystalline films with a
fixed internal connectivity on a random substrate. Defect free triangular
lattices exhibit a sharp transition to a low temperature glassy phase with
anomalous phonon fluctuations and a nonlinear force-displacement law with a
continuously variable exponent, similar to the vortex glass phase of directed
lines in 1+1 dimensions. The periodicity of the tethered monolayer acts like a
filter which amplifies particular Fourier components of the disorder. However,
the absence of annealed topological defects like dislocations is crucial: the
transition is destroyed when the constraint of fixed connectivity is relaxed
and dislocations are allowed to proliferate.Comment: revtex, preprint style, 27 pages. This submission is a revision of
cond-mat/9607184. The revisions affect only Appendix B, Appendix C, and Eqs.
2.27, 2.28, 2.3
Heavy quark polarizations of in the general two Higgs doublet model
The polarizations of the heavy quark ( or ) in the process have been calculated in the general two Higgs doublet model.
The CP violating normal polarization of the top quark can reach 8%, and for the bottom quark, while it is zero in the standard model. The
longitudinal and transverse polarizations of the bottom quark can be
significantly different from those in SM and consequently could aslo be used as
the probe of the new physics.Comment: 12 pages, discussion on statistic significance added, version to
appear in PR
Chaotic Orbits in Thermal-Equilibrium Beams: Existence and Dynamical Implications
Phase mixing of chaotic orbits exponentially distributes these orbits through
their accessible phase space. This phenomenon, commonly called ``chaotic
mixing'', stands in marked contrast to phase mixing of regular orbits which
proceeds as a power law in time. It is operationally irreversible; hence, its
associated e-folding time scale sets a condition on any process envisioned for
emittance compensation. A key question is whether beams can support chaotic
orbits, and if so, under what conditions? We numerically investigate the
parameter space of three-dimensional thermal-equilibrium beams with space
charge, confined by linear external focusing forces, to determine whether the
associated potentials support chaotic orbits. We find that a large subset of
the parameter space does support chaos and, in turn, chaotic mixing. Details
and implications are enumerated.Comment: 39 pages, including 14 figure
Thermodynamic of the Ghost Dark Energy Universe
Recently, the vacuum energy of the QCD ghost in a time-dependent background
is proposed as a kind of dark energy candidate to explain the acceleration of
the Universe. In this model, the energy density of the dark energy is
proportional to the Hubble parameter , which is the Hawking temperature on
the Hubble horizon of the Friedmann-Robertson-Walker (FRW) Universe. In this
paper, we generalized this model and choice the Hawking temperature on the
so-called trapping horizon, which will coincides with the Hubble temperature in
the context of flat FRW Universe dominated by the dark energy component. We
study the thermodynamics of Universe with this kind of dark energy and find
that the entropy-area relation is modified, namely, there is an another new
term besides the area term.Comment: 8 pages, no figure
Mutator Dynamics on a Smooth Evolutionary Landscape
We investigate a model of evolutionary dynamics on a smooth landscape which
features a ``mutator'' allele whose effect is to increase the mutation rate. We
show that the expected proportion of mutators far from equilibrium, when the
fitness is steadily increasing in time, is governed solely by the transition
rates into and out of the mutator state. This results is a much faster rate of
fitness increase than would be the case without the mutator allele. Near the
fitness equilibrium, however, the mutators are severely suppressed, due to the
detrimental effects of a large mutation rate near the fitness maximum. We
discuss the results of a recent experiment on natural selection of E. coli in
the light of our model.Comment: 4 pages, 3 figure
Azimuthal distributions of radial momentum and velocity in relativistic heavy ion collisions
Azimuthal distributions of radial (transverse) momentum, mean radial
momentum, and mean radial velocity of final state particles are suggested for
relativistic heavy ion collisions. Using transport model AMPT with string
melting, these distributions for Au + Au collisions at 200 GeV are presented
and studied. It is demonstrated that the distribution of total radial momentum
is more sensitive to the anisotropic expansion, as the anisotropies of final
state particles and their associated transverse momentums are both counted in
the measure. The mean radial velocity distribution is compared with the radial
{\deg}ow velocity. The thermal motion contributes an isotropic constant to mean
radial velocity
Acoustic cues to tonal contrasts in Mandarin: Implications for cochlear implants
The present study systematically manipulated three acoustic cues-fundamental frequency (f0), amplitude envelope, and duration-to investigate their contributions to tonal contrasts in Mandarin. Simplified stimuli with all possible combinations of these three cues were presented for identification to eight normal-hearing listeners, all native speakers of Mandarin from Taiwan. The f0 information was conveyed either by an f0-controlled sawtooth carrier or a modulated noise so as to compare the performance achievable by a clear indication of voice f0 and what is possible with purely temporal coding of f0. Tone recognition performance with explicit f0 was much better than that with any combination of other acoustic cues (consistently greater than 90% correct compared to 33%-65%; chance is 25%). In the absence of explicit f0, the temporal coding of f0 and amplitude envelope both contributed somewhat to tone recognition, while duration had only a marginal effect. Performance based on these secondary cues varied greatly across listeners. These results explain the relatively poor perception of tone in cochlear implant users, given that cochlear implants currently provide only weak cues to f0, so that users must rely upon the purely temporal (and secondary) features for the perception of tone. (c) 2008 Acoustical Society of America
- …
