23,949 research outputs found

    Gravitational Anomaly and Hawking Radiation of Brane World Black Holes

    Full text link
    We apply Wilczek and his collaborators' anomaly cancellation approach to the 3-dimensional Schwarzschild- and BTZ-like brane world black holes induced by the generalized C metrics in the Randall-Sundrum scenario. Based on the fact that the horizon of brane world black hole will extend into the bulk spacetime, we do the calculation from the bulk generalized C metrics side and show that this approach also reproduces the correct Hawking radiation for these brane world black holes. Besides, since this approach does not involve the dynamical equation, it also shows that the Hawking radiation is only a kinematic effect.Comment: 11 pages. v2: minor changes and references adde

    Quantum Anomalous Hall Effect in Hg1y_{1-y}Mny_{y}Te Quantum Wells

    Full text link
    The quantum Hall effect is usually observed when the two-dimensional electron gas is subjected to an external magnetic field, so that their quantum states form Landau levels. In this work we predict that a new phenomenon, the quantum anomalous Hall effect, can be realized in Hg1y_{1-y}Mny_{y}Te quantum wells, without the external magnetic field and the associated Landau levels. This effect arises purely from the spin polarization of the MnMn atoms, and the quantized Hall conductance is predicted for a range of quantum well thickness and the concentration of the MnMn atoms. This effect enables dissipationless charge current in spintronics devices.Comment: 5 pages, 3 figures. For high resolution figures see final published version when availabl

    Exciton gas transport through nano-constrictions

    Get PDF
    An indirect exciton is a bound state of an electron and a hole in spatially separated layers. Two-dimensional indirect excitons can be created optically in heterostructures containing double quantum wells or atomically thin semiconductors. We study theoretically transmission of such bosonic quasiparticles through nano-constrictions. We show that quantum transport phenomena, e.g., conductance quantization, single-slit diffraction, two-slit interference, and the Talbot effect, are experimentally realizable in systems of indirect excitons. We discuss similarities and differences between these phenomena and their counterparts in electronic devices.Comment: (v2) Updated title, text, and references; 12 pages, 9 figure

    Pinning and Tribology of Tethered Monolayers on Disordered Substrates

    Full text link
    We study the statistical mechanics and dynamics of crystalline films with a fixed internal connectivity on a random substrate. Defect free triangular lattices exhibit a sharp transition to a low temperature glassy phase with anomalous phonon fluctuations and a nonlinear force-displacement law with a continuously variable exponent, similar to the vortex glass phase of directed lines in 1+1 dimensions. The periodicity of the tethered monolayer acts like a filter which amplifies particular Fourier components of the disorder. However, the absence of annealed topological defects like dislocations is crucial: the transition is destroyed when the constraint of fixed connectivity is relaxed and dislocations are allowed to proliferate.Comment: revtex, preprint style, 27 pages. This submission is a revision of cond-mat/9607184. The revisions affect only Appendix B, Appendix C, and Eqs. 2.27, 2.28, 2.3

    Heavy quark polarizations of e+eqqˉhe^+e^-\to q \bar q h in the general two Higgs doublet model

    Full text link
    The polarizations of the heavy quark (q=tq=t or bb) in the process e+eqqˉhe^+e^- \to q \bar q h have been calculated in the general two Higgs doublet model. The CP violating normal polarization of the top quark can reach 8%, and 232 \sim 3% for the bottom quark, while it is zero in the standard model. The longitudinal and transverse polarizations of the bottom quark can be significantly different from those in SM and consequently could aslo be used as the probe of the new physics.Comment: 12 pages, discussion on statistic significance added, version to appear in PR

    Chaotic Orbits in Thermal-Equilibrium Beams: Existence and Dynamical Implications

    Full text link
    Phase mixing of chaotic orbits exponentially distributes these orbits through their accessible phase space. This phenomenon, commonly called ``chaotic mixing'', stands in marked contrast to phase mixing of regular orbits which proceeds as a power law in time. It is operationally irreversible; hence, its associated e-folding time scale sets a condition on any process envisioned for emittance compensation. A key question is whether beams can support chaotic orbits, and if so, under what conditions? We numerically investigate the parameter space of three-dimensional thermal-equilibrium beams with space charge, confined by linear external focusing forces, to determine whether the associated potentials support chaotic orbits. We find that a large subset of the parameter space does support chaos and, in turn, chaotic mixing. Details and implications are enumerated.Comment: 39 pages, including 14 figure

    Thermodynamic of the Ghost Dark Energy Universe

    Full text link
    Recently, the vacuum energy of the QCD ghost in a time-dependent background is proposed as a kind of dark energy candidate to explain the acceleration of the Universe. In this model, the energy density of the dark energy is proportional to the Hubble parameter HH, which is the Hawking temperature on the Hubble horizon of the Friedmann-Robertson-Walker (FRW) Universe. In this paper, we generalized this model and choice the Hawking temperature on the so-called trapping horizon, which will coincides with the Hubble temperature in the context of flat FRW Universe dominated by the dark energy component. We study the thermodynamics of Universe with this kind of dark energy and find that the entropy-area relation is modified, namely, there is an another new term besides the area term.Comment: 8 pages, no figure

    Mutator Dynamics on a Smooth Evolutionary Landscape

    Full text link
    We investigate a model of evolutionary dynamics on a smooth landscape which features a ``mutator'' allele whose effect is to increase the mutation rate. We show that the expected proportion of mutators far from equilibrium, when the fitness is steadily increasing in time, is governed solely by the transition rates into and out of the mutator state. This results is a much faster rate of fitness increase than would be the case without the mutator allele. Near the fitness equilibrium, however, the mutators are severely suppressed, due to the detrimental effects of a large mutation rate near the fitness maximum. We discuss the results of a recent experiment on natural selection of E. coli in the light of our model.Comment: 4 pages, 3 figure

    Azimuthal distributions of radial momentum and velocity in relativistic heavy ion collisions

    Full text link
    Azimuthal distributions of radial (transverse) momentum, mean radial momentum, and mean radial velocity of final state particles are suggested for relativistic heavy ion collisions. Using transport model AMPT with string melting, these distributions for Au + Au collisions at 200 GeV are presented and studied. It is demonstrated that the distribution of total radial momentum is more sensitive to the anisotropic expansion, as the anisotropies of final state particles and their associated transverse momentums are both counted in the measure. The mean radial velocity distribution is compared with the radial {\deg}ow velocity. The thermal motion contributes an isotropic constant to mean radial velocity

    Acoustic cues to tonal contrasts in Mandarin: Implications for cochlear implants

    Get PDF
    The present study systematically manipulated three acoustic cues-fundamental frequency (f0), amplitude envelope, and duration-to investigate their contributions to tonal contrasts in Mandarin. Simplified stimuli with all possible combinations of these three cues were presented for identification to eight normal-hearing listeners, all native speakers of Mandarin from Taiwan. The f0 information was conveyed either by an f0-controlled sawtooth carrier or a modulated noise so as to compare the performance achievable by a clear indication of voice f0 and what is possible with purely temporal coding of f0. Tone recognition performance with explicit f0 was much better than that with any combination of other acoustic cues (consistently greater than 90% correct compared to 33%-65%; chance is 25%). In the absence of explicit f0, the temporal coding of f0 and amplitude envelope both contributed somewhat to tone recognition, while duration had only a marginal effect. Performance based on these secondary cues varied greatly across listeners. These results explain the relatively poor perception of tone in cochlear implant users, given that cochlear implants currently provide only weak cues to f0, so that users must rely upon the purely temporal (and secondary) features for the perception of tone. (c) 2008 Acoustical Society of America
    corecore