53,844 research outputs found

    The Origin of Warped, Precessing Disks in X-Ray Binaries

    Get PDF
    The radiation-driven warping instability discovered by Pringle holds considerable promise as the mechanism responsible for producing warped, precessing accretion disks in X-ray binaries. This instability is an inherently global mode of the disk, thereby avoiding the difficulties with earlier models for the precession. Here we follow up earlier work to study the linear behavior of the instability in the specific context of a binary system. We treat the influence of the companion as an orbit-averaged, quadrupole torque on the disk. The presence of this external torque allows the existence of solutions in which the direction of precession of the warp is retrograde with respect to disk rotation, in addition to the prograde solutions which exist in the absence of external torques.Comment: 12 pages, 3 figure

    Hyperaccretion during tidal disruption events: weakly bound debris envelopes and jets

    Full text link
    After the destruction of the star during a tidal disruption event (TDE), the cataclysmic encounter between a star and the supermassive black hole (SMBH) of a galaxy, approximately half of the original stellar debris falls back onto the hole at a rate that can initially exceed the Eddington limit by orders of magnitude. We argue that the angular momentum of this matter is too low to allow it to attain a disk-like configuration with accretion proceeding at a mildly super-Eddington rate, the excess energy being carried away by a combination of radiative losses and radially distributed winds. Instead, we propose that the infalling gas traps accretion energy until it inflates into a weakly-bound, quasi-spherical structure with gas extending nearly to the poles. We study the structure and evolution of such "Zero-Bernoulli accretion" flows (ZEBRAs) as a model for the super-Eddington phase of TDEs. We argue that such flows cannot stop extremely super-Eddington accretion from occurring, and that once the envelope is maximally inflated, any excess accretion energy escapes through the poles in the form of powerful jets. We compare the predictions of our model to Swift J1644+57, the putative super-Eddington TDE, and show that it can qualitatively reproduce some of its observed features. Similar models, including self-gravity, could be applicable to gamma-ray bursts from collapsars and the growth of supermassive black hole seeds inside quasi-stars.Comment: 19 pages, 14 figures. Accepted for publication in Ap

    One Controller at a Time (1-CAT): A mimo design methodology

    Get PDF
    The One Controller at a Time (1-CAT) methodology for designing digital controllers for Large Space Structures (LSS's) is introduced and illustrated. The flexible mode problem is first discussed. Next, desirable features of a LSS control system design methodology are delineated. The 1-CAT approach is presented, along with an analytical technique for carrying out the 1-CAT process. Next, 1-CAT is used to design digital controllers for the proposed Space Based Laser (SBL). Finally, the SBL design is evaluated for dynamical performance, noise rejection, and robustness

    Theoretical evaluation of rigid baffles in the suppression of combustion instability

    Get PDF
    An analytical technique for the prediction of the effects of rigid baffles on the stability of liquid propellant combustors is presented. This analysis employs both two and three dimensional combustor models characterized by concentrated combustion sources at the chamber injector and a constant Mach number nozzle. An eigenfunction-matching method is used to solve the linearized partial differential equations describing the unsteady flow field for both models. Boundary layer corrections to this unsteady flow are in a mechanical energy dissipation model to evaluate viscous and turbulence effects within the flow. An integral instability relationship is then employed to predict the decay rate of the oscillations. Results of this analysis agree qualitatively with experimental observations and show that sufficient dissipation exists to indicate that the proper mechanism of baffle damping is a fluid dynamic loss. The response of the dissipation model to varying baffle blade length, mean flow Mach number, oscillation amplitude, baffle configuration, and oscillation mode is examined

    Study of zero-gravity, vapor/liquid separators

    Get PDF
    Heat exchange, mechanical separation, surface tension, and dielectrophoretic methods of separating vapor from liquid at zero gravity for vapor ventin

    Suppression of nonlinear oscillations in combustors with partial length acoustic liners

    Get PDF
    An analytical model is formulated for a three-dimensional nonlinear stability problem in a rocket motor combustion chamber. The chamber is modeled as a right circular cylinder with a short (multi-orifice) nozzle, and an acoustic linear covering an arbitrary portion of the cylindrical periphery. The combustion is concentrated at the injector and the gas flow field is characterized by a mean Mach number. The unsteady combustion processes are formulated using the Crocco time lag model. The resulting equations are solved using a Green's function method combined with numerical evaluation techniques. The influence of acoustic liners on the nonlinear waveforms is predicted. Nonlinear stability limits and regions where triggering is possible are also predicted for both lined and unlined combustors in terms of the combustion parameters
    corecore