7,309 research outputs found

    Intracerebral Implantation of Ionic Synthetic Hydrogels: Effect of Polar Substrata on Astrocytosis and Axons

    Get PDF
    In previous studies, hyperporous synthetic hydrogels of poly(glyceryl methacrylate) or p(GMA), containing bioadhesive substrates of collagen, were implanted into rat cerebral tissue in order to provide systems of oriented guidance channels for directing the growth of the scar and axons /28/. In the present study, ionic p(GMA)- collagen hydrogels containing polar chemical groups, either basic amino groups or acidic carboxyl groups, were evaluated for their tolerance and their effects on the brain scarring response and axonal reactivity after long-term implantation in the cerebral cortex. In all animals, the implants were well tolerated. Although both types of gels influenced the astroglial reaction near the bioimplant, hydrogels carrying carboxyl groups had the strongest influence on the elongation, the direction and the organization of astrocytic processes so that a glial matrix could form in regions of the gel. Extracellular material (e.g. reticulin) was also deposited into the gels carrying carboxyl groups. Although cortical nerve fibers .in the surrounding tissue showed a regenerative response, extending onto or into the matrices, this behavior seemed to depend more on the organization of the .astrocytic scar imposed by the gel than on the type of gel. We conclude that matrices carrying negatively charged groups influence favorably the astrocytosis and the deposition of connective tissue, and that this approach represents a new avenue in attempting to modulate the brain scar formation

    Multiangle observations of Arctic clouds from FIRE ACE: June 3, 1998, case study

    Get PDF
    In May and June 1998 the Airborne Multiangle Imaging Spectroradiometer (AirMISR) participated in the FIRE Arctic Cloud Experiment (ACE). AirMISR is an airborne instrument for obtaining multiangle imagery similar to that of the satellite-borne MISR instrument. This paper presents a detailed analysis of the data collected on June 3, 1998. In particular, AirMISR radiance measurements are compared with measurements made by two other instruments, the Cloud Absorption Radiometer (CAR) and the MODIS airborne simulator (MAS), as well as to plane-parallel radiative transfer simulations. It is found that the AirMISR radiance measurements and albedo estimates compare favorably both with the other instruments and with the radiative transfer simulations. In addition to radiance and albedo, the multiangle AirMISR data can be used to obtain estimates of cloud top height using stereoimaging techniques. Comparison of AirMISR retrieved cloud top height (using the complete MISR-based stereoimaging approach) shows excellent agreement with the measurements from the airborne Cloud Lidar System (CLS) and ground-based millimeterwave cloud radar

    The Coulomb Sum and Proton-Proton Correlations in Few-Body Nuclei

    Full text link
    In simple models of the nuclear charge operator, measurements of the Coulomb sum and the charge form factor of a nucleus directly determine the proton-proton correlations. We examine experimental results obtained for few-body nuclei at Bates and Saclay using models of the charge operator that include both one- and two-body terms. Previous analyses using one-body terms only have failed to reproduce experimental results. However, we find that the same operators which have been used to successfully describe the charge form factors also produce substantial agreement with measurements of the Coulomb sum.Comment: 11 pages, Revtex version 3.0 with 3 Postscript figures appended, ANL preprint PHY-7473-TH-9

    SPIRAL2 cryomodule production result and analyses

    Get PDF
    THIOB02International audienceThe production and qualification of the SPIRAL2 cryomodules are close to the end. Their performances arenow well established. This paper will explain the path followed to the good achievements, and show somestatistical analyses to be used for future projects. How far can we push the performances? What cryogenicsconsumption shall we take as design values

    Blunted cardiovascular responses to acute psychological stress predict low behavioral but not self-reported perseverance

    Get PDF
    Emerging evidence relates attenuated physiological stress reactions to poor behavioral regulation. However, only a small number of behaviors such as impulsivity and risk taking have been explored. Nevertheless, one opportunistic study suggested that blunted reactivity might relate to poor perseverance. The present study examined the relationship between cardiovascular reactivity to acute active psychological stress and self‐reported and behavioral perseverance. Participants (N = 64) completed a self‐report perseverance questionnaire before heart rate (HR) and blood pressure (BP) were measured at rest and in response to 4‐min active (paced auditory serial addition; PASAT) and passive (cold pressor) stress tests. This was followed by an unsolvable Euler puzzle tracing task, with the time spent and number of attempts endeavoring to solve the puzzle recorded as behavioral perseverance measures. Blunted systolic and diastolic BP reactivity to the PASAT was associated with fewer attempts at the impossible puzzle, and lower diastolic BP PASAT reactivity related to less time persevering at the puzzle. Moreover, attenuated diastolic BP and HR PASAT reactivity predicted poorer perseverance at keeping one's hand in the iced water of the cold pressor task. There was no association between reactivity and self‐reported perseverance. These preliminary findings add to the evidence that implicates blunted reactivity as a physiological marker of poor behavioral regulation, and this may indicate why individuals with blunted reactivity are at increased risk of developing negative health outcomes (e.g., obesity and addictions)

    Eikonal analysis of Coulomb distortion in quasi-elastic electron scattering

    Full text link
    An eikonal expansion is used to provide systematic corrections to the eikonal approximation through order 1/k21/k^2, where kk is the wave number. Electron wave functions are obtained for the Dirac equation with a Coulomb potential. They are used to investigate distorted-wave matrix elements for quasi-elastic electron scattering from a nucleus. A form of effective-momentum approximation is obtained using trajectory-dependent eikonal phases and focusing factors. Fixing the Coulomb distortion effects at the center of the nucleus, the often-used ema approximation is recovered. Comparisons of these approximations are made with full calculations using the electron eikonal wave functions. The ema results are found to agree well with the full calculations.Comment: 12 pages, 6 Postscript figure

    Pressure-induced amorphization and polyamorphism in one-dimensional single crystal TiO2 nanomaterials

    Full text link
    The structural phase transitions of single crystal TiO2-B nanoribbons were investigated in-situ at high-pressure using the synchrotron X-ray diffraction and the Raman scattering. Our results have shown a pressure-induced amorphization (PIA) occurred in TiO2-B nanoribbons upon compression, resulting in a high density amorphous (HDA) form related to the baddeleyite structure. Upon decompression, the HDA form transforms to a low density amorphous (LDA) form while the samples still maintain their pristine nanoribbon shape. HRTEM imaging reveals that the LDA phase has an {\alpha}-PbO2 structure with short range order. We propose a homogeneous nucleation mechanism to explain the pressure-induced amorphous phase transitions in the TiO2-B nanoribbons. Our study demonstrates for the first time that PIA and polyamorphism occurred in the one-dimensional (1D) TiO2 nanomaterials and provides a new method for preparing 1D amorphous nanomaterials from crystalline nanomaterials.Comment: 4 figure

    G0^0 Electronics and Data Acquisition (Forward-Angle Measurements)

    Get PDF
    The G0^0 parity-violation experiment at Jefferson Lab (Newport News, VA) is designed to determine the contribution of strange/anti-strange quark pairs to the intrinsic properties of the proton. In the forward-angle part of the experiment, the asymmetry in the cross section was measured for e⃗p\vec{e}p elastic scattering by counting the recoil protons corresponding to the two beam-helicity states. Due to the high accuracy required on the asymmetry, the G0^0 experiment was based on a custom experimental setup with its own associated electronics and data acquisition (DAQ) system. Highly specialized time-encoding electronics provided time-of-flight spectra for each detector for each helicity state. More conventional electronics was used for monitoring (mainly FastBus). The time-encoding electronics and the DAQ system have been designed to handle events at a mean rate of 2 MHz per detector with low deadtime and to minimize helicity-correlated systematic errors. In this paper, we outline the general architecture and the main features of the electronics and the DAQ system dedicated to G0^0 forward-angle measurements.Comment: 35 pages. 17 figures. This article is to be submitted to NIM section A. It has been written with Latex using \documentclass{elsart}. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment In Press (2007
    • 

    corecore