2,946 research outputs found

    Phonons in intrinsic Josephson systems with parallel magnetic field

    Full text link
    Subgap resonances in the I-V curves of layered superconductors are explained by the coupling between Josephson oscillations and phonons with dispersion in c-direction. In the presence of a magnetic field applied parallel to the layers additional structures due to fluxon motion appear. Their coupling with phonons is investigated theoretically and a shift of the phonon resonances in strong magnetic fields is predicted.Comment: Invited Paper to the "2nd International Symposium on Intrinsic Josephson Effects and Plasma Oscillations in High-Tc Superconductors", 22-24 August 2000, Sendai, Japan, to be published in Physica

    Simulation of I-V Hysteresis Branches in An Intrinsic Stack of Josephson Junctions in High TcT_c Superconductors

    Full text link
    I-V characteristics of the high Tc_c superconductor Bi2_2Sr2_2Ca1_1C2_2O8_8 shows a strong hysteresis, producing many branches. The origin of hysteresis jumps is studied by use of the model of multi-layered Josephson junctions proposed by one of the authors (T. K.). The charging effect at superconducting layers produces a coupling between the next nearest neighbor phase-differences, which determines the structure of hysteresis branches. It will be shown that a solution of phase motions is understood as a combination of rotating and oscillating phase-differences, and that, at points of hysteresis jumps, there occurs a change in the number of rotating phase-differences. Effects of dissipation are analyzed. The dissipation in insulating layers works to damp the phase motion itself, while the dissipation in superconducting layers works to damp relative motions of phase-differences. Their effects to hysteresis jumps are discussed.Comment: 18 pages, Latex, 8 figures. To be appear in Phys.Rev.B Vol.60(1999

    Diffraction of a Bose-Einstein condensate from a Magnetic Lattice on a Micro Chip

    Full text link
    We experimentally study the diffraction of a Bose-Einstein condensate from a magnetic lattice, realized by a set of 372 parallel gold conductors which are micro fabricated on a silicon substrate. The conductors generate a periodic potential for the atoms with a lattice constant of 4 microns. After exposing the condensate to the lattice for several milliseconds we observe diffraction up to 5th order by standard time of flight imaging techniques. The experimental data can be quantitatively interpreted with a simple phase imprinting model. The demonstrated diffraction grating offers promising perspectives for the construction of an integrated atom interferometer.Comment: 4 pages, 4 figure

    Visualizing supercurrents in ferromagnetic Josephson junctions with various arrangements of 0 and \pi segments

    Get PDF
    Josephson junctions with ferromagnetic barrier can have positive or negative critical current depending on the thickness dFd_F of the ferromagnetic layer. Accordingly, the Josephson phase in the ground state is equal to 0 (a conventional or 0 junction) or to π\pi (π\pi junction). When 0 and π\pi segments are joined to form a "0-π\pi junction", spontaneous supercurrents around the 0-π\pi boundary can appear. Here we report on the visualization of supercurrents in superconductor-insulator-ferromagnet-superconductor (SIFS) junctions by low-temperature scanning electron microscopy (LTSEM). We discuss data for rectangular 0, π\pi, 0-π\pi, 0-π\pi-0 and 20 \times 0-π\pi junctions, disk-shaped junctions where the 0-π\pi boundary forms a ring, and an annular junction with two 0-π\pi boundaries. Within each 0 or π\pi segment the critical current density is fairly homogeneous, as indicated both by measurements of the magnetic field dependence of the critical current and by LTSEM. The π\pi parts have critical current densities jcπj_c^\pi up to 35\units{A/cm^2} at T = 4.2\units{K}, which is a record value for SIFS junctions with a NiCu F-layer so far. We also demonstrate that SIFS technology is capable to produce Josephson devices with a unique topology of the 0-π\pi boundary.Comment: 29 pages, 8 figure

    Interference patterns of multifacet 20x(0-pi-) Josephson junctions with ferromagnetic barrier

    Get PDF
    We have realized multifacet Josephson junctions with periodically alternating critical current density (MJJs) using superconductor-insulator-ferromagnet-superconductor heterostructures. We show that anomalous features of critical current vs. applied magnetic field, observed also for other types of MJJs, are caused by a non-uniform flux density (parallel to the barrier) resulting from screening currents in the electrodes in the presence of a (parasitic) off-plane field component.Comment: submitted to PR

    Observation of Andreev bound states in bicrystal grain-boundary Josephson junctions of the electron doped superconductor LaCeCuO

    Get PDF
    We observe a zero-bias conductance peak (ZBCP) in the ab-plane quasiparticle tunneling spectra of thin film grain-boundary Josephson junctions made of the electron doped cuprate superconductor LaCeCuO. An applied magnetic field reduces the spectral weight around zero energy and shifts it non-linearly to higher energies consistent with a Doppler shift of the Andreev bound states (ABS) energy. For all magnetic fields the ZBCP appears simultaneously with the onset of superconductivity. These observations strongly suggest that the ZBCP results from the formation of ABS at the junction interfaces, and, consequently, that there is a sign change in the symmetry of the superconducting order parameter of this compound consistent with a d-wave symmetry.Comment: 9 pages, 7 figures; December 2004, accepted for publication in Phys. Rev.

    Transport, magnetic, and structural properties of La0.7_{0.7}Ce0.3_{0.3}MnO3_3 thin films. Evidence for hole-doping

    Full text link
    Cerium-doped manganite thin films were grown epitaxially by pulsed laser deposition at 720∘720 ^\circC and oxygen pressure pO2=1−25p_{O_2}=1-25 Pa and were subjected to different annealing steps. According to x-ray diffraction (XRD) data, the formation of CeO2_2 as a secondary phase could be avoided for pO2≥8p_{O_2}\ge 8 Pa. However, transmission electron microscopy shows the presence of CeO2_2 nanoclusters, even in those films which appear to be single phase in XRD. With O2_2 annealing, the metal-to-insulator transition temperature increases, while the saturation magnetization decreases and stays well below the theoretical value for electron-doped La0.7_{0.7}Ce0.3_{0.3}MnO3_3 with mixed Mn3+^{3+}/Mn2+^{2+} valences. The same trend is observed with decreasing film thickness from 100 to 20 nm, indicating a higher oxygen content for thinner films. Hall measurements on a film which shows a metal-to-insulator transition clearly reveal holes as dominating charge carriers. Combining data from x-ray photoemission spectroscopy, for determination of the oxygen content, and x-ray absorption spectroscopy (XAS), for determination of the hole concentration and cation valences, we find that with increasing oxygen content the hole concentration increases and Mn valences are shifted from 2+ to 4+. The dominating Mn valences in the films are Mn3+^{3+} and Mn4+^{4+}, and only a small amount of Mn2+^{2+} ions can be observed by XAS. Mn2+^{2+} and Ce4+^{4+} XAS signals obtained in surface-sensitive total electron yield mode are strongly reduced in the bulk-sensitive fluorescence mode, which indicates hole-doping in the bulk for those films which do show a metal-to-insulator transition.Comment: 8 pages, 10 figure

    Critical current diffraction pattern of SIFS Josephson junctions with step-like F-layer

    Full text link
    We present the latest generation of superconductor-insulator-ferromagnet-superconductor Josephson tunnel junctions with a step-like thickness of the ferromagnetic (F) layer. The F-layer thicknesses d1d_1 and d2d_2 in both halves were varied to obtain different combinations of positive and negative critical current densities jc,1j_{c,1} and jc,2j_{c,2}. The measured dependences of the critical current on applied magnetic field can be well described by a model which takes into account different critical current densities (obtained from reference junctions) and different net magnetization of the multidomain ferromagnetic layer in both halves.Comment: 7 pages, 3 figure
    • …
    corecore