897 research outputs found

    Extended Scaling for the high dimension and square lattice Ising Ferromagnets

    Full text link
    In the high dimension (mean field) limit the susceptibility and the second moment correlation length of the Ising ferromagnet depend on temperature as chi(T)=tau^{-1} and xi(T)=T^{-1/2}tau^{-1/2} exactly over the entire temperature range above the critical temperature T_c, with the scaling variable tau=(T-T_c)/T. For finite dimension ferromagnets temperature dependent effective exponents can be defined over all T using the same expressions. For the canonical two dimensional square lattice Ising ferromagnet it is shown that compact "extended scaling" expressions analogous to the high dimensional limit forms give accurate approximations to the true temperature dependencies, again over the entire temperature range from T_c to infinity. Within this approach there is no cross-over temperature in finite dimensions above which mean-field-like behavior sets in.Comment: 6 pages, 6 figure

    Effect of boundaries on vacuum field fluctuations and radiation-mediated interactions between atoms

    Get PDF
    In this paper we discuss and review several aspects of the effect of boundary conditions and structured environments on dispersion and resonance interactions involving atoms or molecules, as well as on vacuum field fluctuations. We first consider the case of a perfect mirror, which is free to move around an equilibrium position and whose mechanical degrees of freedom are treated quantum mechanically. We investigate how the quantum fluctuations of the mirror's position affect vacuum field fluctuations for both a one-dimensional scalar and electromagnetic field, showing that the effect is particularly significant in the proximity of the moving mirror. This result can be also relevant for possible gravitational effects, since the field energy density couples to gravity. We stress that this interaction-induced modification of the vacuum field fluctuations can be probed through the Casimir-Polder interaction with a polarizable body, thus allowing to detect the effect of the mirror's quantum position fluctuations. We then consider the effect of an environment such as an isotropic photonic crystal or a metallic waveguide, on the resonance interaction between two entangled identical atoms, one excited and the other in the ground state. We discuss the strong dependence of the resonance interaction with the relative position of the atomic transition frequency with the gap of the photonic crystal in the former case, and with the cut-off frequency of waveguide in the latter.Comment: 8 pages, 2 figures, Proceedings of the Eighth International Workshop DICE 2016 Spacetime - Matter - Quantum Mechanic

    Dynamical Linked Cluster Expansions: A Novel Expansion Scheme for Point-Link-Point-Interactions

    Get PDF
    Dynamical linked cluster expansions are linked cluster expansions with hopping parameter terms endowed with their own dynamics. This amounts to a generalization from 2-point to point-link-point interactions. We develop an associated graph theory with a generalized notion of connectivity and describe an algorithmic generation of the new multiple-line graphs. We indicate physical applications to spin glasses, partially annealed neural networks and SU(N) gauge Higgs systems. In particular the new expansion technique provides the possibility of avoiding the replica-trick in spin glasses. We consider variational estimates for the SU(2) Higgs model of the electroweak phase transition. The results for the transition line, obtained by dynamical linked cluster expansions, agree quite well with corresponding high precision Monte Carlo results.Comment: 41 pages, latex2e, 10 postscript figure

    Determination of Gd concentration profile in UO2-Gd2O3 fuel pellets

    Full text link
    A transversal mapping of the Gd concentration was measured in UO2-Gd2O3 nuclear fuel pellets by electron paramagnetic resonance spectroscopy (EPR). The quantification was made from the comparison with a Gd2O3 reference sample. The nominal concentration in the pellets is UO2: 7.5 % Gd2O3. A concentration gradient was found, which indicates that the Gd2O3 amount diminishes towards the edges of the pellets. The concentration varies from (9.3 +/- 0.5)% in the center to (5.8 +/- 0.3)% in one of the edges. The method was found to be particularly suitable for the precise mapping of the distribution of Gd3+ ions in the UO2 matrix.Comment: 10 pages, 5 figures, 2 tables. Submitted to Journal of Nuclear Material

    Neuronal bursting: interactions of the persistent sodium and CAN currents

    Get PDF
    The pre-Botzinger complex (pBC) is a heterogeneous neuronal network within the mammalian brainstem and has been experimentally found to generate robust, synchronous bursts [1]. Significant modeling research has been conducted on characterizing the dynamics of individual neurons within the pBC. [2, 3] It is well known that the persistent sodium current (INaP) contributes to square-wave bursting seen in the pBC [4]. Recent experimental work within the pBC identified a signaling cascade that starts with presynaptic glutamate and ends with the release of intracellular calcium that activates a nonspecific cationic current (ICAN) [5]. A subsequent model demonstrated that ICAN may contribute to bursts within the pBC that exhibit depolarization block [6]. With these two mechanisms for generating bursts present within the pBC, an open question is how do they combine to generate the robust bursts seen in the network? The present work seeks to analyze the result of including both INaP and ICAN within the same model. We consider the effects of heterogeneity in the conductance gNaP of INaP and the conductance gCAN of ICAN; with this heterogeneity in mind, the model cell may be quiescent, tonically active, have only square-wave bursts, have only depolarization-block exhibiting bursts, or may show both types of bursting. Using the mathematical tools of bifurcation analysis and slow-fast decomposition, we illuminate the mechanisms underlying the transitions of a model cell between the types of dynamics listed above. Our results show that, in cases where gCAN is relatively high, increasing gNaP increases the range of gCAN where the resultant cell has depolarization-block exhibiting bursts. On the other hand, when gCAN is relatively low, increasing gNaP may cause the cell to transition from quiescence, to square wave bursting, to tonic activity, to square wave bursts with high duty cycles, and finally further increase of gNaP causes the cell to again be tonically active. The latter two transitions do not occur if ICAN is absent. The interactions of ICAN and INaP are relevant to many systems beyond the pBC. Individually, ICAN and INaP have been focused on as important to rhythmic burst generation in other systems such as the entorhinal cortex [7]; however, it is likely that both currents are present in these systems. Thus, a detailed account for the interaction of ICAN and INaP may help explain the rhythm generation encountered in other systems beyond the pBC

    A scanning tunneling microscopy based potentiometry technique and its application to the local sensing of the spin Hall effect

    Full text link
    A scanning tunneling microscopy based potentiometry technique for the measurements of the local surface electric potential is presented and illustrated by experiments performed on current-carrying thin tungsten films. The obtained results demonstrate a sub-millivolt resolution in the measured surface potential. The application of this potentiometry technique to the local sensing of the spin Hall effect is outlined and some experimental results are reported.Comment: 9 pages and 4 figure

    Pure spin current manipulation in antiferromagnetically exchange coupled heterostructures

    Get PDF
    We present a model to describe the spin currents generated by ferromagnet/spacer/ferromagnet exchange coupled trilayer systems and heavy metal layers with strong spin-orbit coupling. By exploiting the magnitude of the exchange coupling (oscillatory RKKY-like coupling) and the spin-flop transition in the magnetization process, it has been possible to produce spin currents polarized in arbitrary directions. The spin-flop transition of the trilayer system originates pure spin currents whose polarization vector depends on the exchange field and the magnetization equilibrium angles. We also discuss a protocol to control the polarization sign of the pure spin current injected into the metallic layer by changing the initial conditions of magnetization of the ferromagnetic layers previously to the spin pumping and inverse spin Hall effect experiments. The small differences in the ferromagnetic layers lead to a change in the magnetization vector rotation that permits the control of the sign of the induced voltage components due to the inverse spin Hall effect. Our results can lead to important advances in hybrid spintronic devices with new functionalities, particularly, the ability to control microscopic parameters such as the polarization direction and the sign of the pure spin current through the variation of macroscopic parameters, such as the external magnetic field or the thickness of the spacer in antiferromagnetic exchange coupled systems.Fil: Avilés Félix, L.. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Butera, Alejandro Ricardo. Comision Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Resonancias Magnéticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: González Chávez, D. E.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Sommer, R. L.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Gomez, Javier Enrique. Comision Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Resonancias Magnéticas; Argentin
    corecore