34 research outputs found

    Analysis of low Reynolds number flow around a heated circular cylinder

    Get PDF
    The objective of this study is to investigate the forced convection from and the flow around a heated cylinder. Experimental and computational results are presented for laminar flow around a heated circular cylinder with a diameter of 10 mm. The experiments were carried out using Particle Image Velocimetry (PIV) in a wind tunnel, and numerical simulations using an in-house code and a commercial software package, FLUENT. This paper pre-sents comparisons for vorticity and temperature contours in the wake of the cylinder. Experimental and computa-tional results are compared with those available in the literature for heated and unheated cylinders. An equation is suggested for a temperature-dependent coefficient defining a reference temperature to be used in place of the con-stant used in other studies. An attempt is also made to correct differences between average cylinder surface tem-perature and measured interior temperature of the cylinder

    Experimental Investigation of Droplet-Droplet Interactions

    No full text
    Shadowgraphy is an established imaging measurement method, allowing in particular to determine droplet velocity and diameter distributions. One advantage of Shadowgraphy compared to other non-intrusive measurement methods is its ability to directly observe collision and coalescence processes. As the expected collision probability in many practical two-phase flows is moderate and the acquisition frequency of the Shadowgraphy system is limited, this measurement method must be optimized for the investigation of droplet-droplet interactions. In this work it is shown that Shadowgraphy can be indeed applied to a quantitative investigation of collision events. For this purpose the software (DaVis 7.2 from LaVision) has been considerably improved with the help of its built-in macro language, allowing an automatic analysis of the measurement results. The resulting experimental procedure has been tested using measurements in a two-phase wind tunnel. Corresponding results are compared with available theoretical predictions

    Optimum air turbulence intensity for polydisperse droplet size growth

    No full text

    Experimental determination of droplet collision rates in turbulence

    No full text
    Inter-particle collisions in turbulent flows are of central importance for many engineering applications and environmental processes. For instance, collision and coalescence is the mechanism for warm rain initiation in cumulus clouds, a still poorly understood issue. This work presents measurements of droplet–droplet interactions in a laboratory turbulent flow, allowing reproducibility and control over initial and boundary conditions. The measured two-phase flow reproduces conditions relevant to cumulus clouds. The turbulent flow and the droplet size distribution are well characterized, and independently the collision rate is measured. Two independent experimental approaches for determining the collision rate are compared with each other: (i) a highmagnification shadowgraphy setup is employed, applying a deformation threshold as collision indicator. This technique has been specifically adapted to measure droplet collision probability in dispersed two-phase flows. (ii) Corresponding results are compared for the first time with a particle tracking approach, post-processing high-speed shadowgraphy image sequences. Using the measured turbulence and droplet properties, the turbulent collision kernel can be calculated for comparison. The two independent measurements deliver comparable orders of magnitude for the collision probability, highlighting the quality of the measurement process, even if the comparison between both measurement techniques is still associated with a large uncertainty. Comparisons with recently published theoretical predictions show reasonable agreement. The theoretical collision rates accounting for collision efficiency are noticeably closer to the measured values than those accounting only for transport

    Droplet Collisions and Interaction with the Turbulent Flow within a Two-Phase Wind Tunnel

    No full text
    Experiments in wind tunnels concerning meteorological issues are not very frequent in the literature. However, such experiments might be essential, for instance for a careful investigation of droplet-droplet interactions in turbulent flows. This issue is crucial for many configurations, in particular to understand warm rain initiation. It is clearly impossible to completely reproduce cloud turbulence within a wind tunnel due to the enormous length scales involved. Nevertheless, it is not necessary to recover the whole spectrum in order to quantify droplet interactions. It is sufficient for this purpose to account correctly for the relevant properties only. In the present paper, these properties and a methodology for setting those in a two-phase wind tunnel are first described. In particular, droplet size and number density, velocities, turbulent kinetic energy, k, and its dissipation rate, ɛ, are suitably reproduced, as demonstrated by non-intrusive measurement techniques. A complete experimental characterization of the air and droplet properties is freely available in a database accessible at http://www.ovgu.de/isut/lss/metstroem. Finally, quantifications of droplet collision rates and comparisons with theoretical predictions are presented, showing that measured collision rates are higher, typically by a factor of 2 to 5. These results demonstrate that model modifications are needed to estimate correctly droplet collision probabilities in turbulent flow

    Experimental determination of droplet collision rates in turbulence

    No full text
    Inter-particle collisions in turbulent flows are of central importance for many engineering applications and environmental processes. For instance, collision and coalescence is the mechanism for warm rain initiation in cumulus clouds, a still poorly understood issue. This work presents measurements of droplet–droplet interactions in a laboratory turbulent flow, allowing reproducibility and control over initial and boundary conditions. The measured two-phase flow reproduces conditions relevant to cumulus clouds. The turbulent flow and the droplet size distribution are well characterized, and independently the collision rate is measured. Two independent experimental approaches for determining the collision rate are compared with each other: (i) a high-magnification shadowgraphy setup is employed, applying a deformation threshold as collision indicator. This technique has been specifically adapted to measure droplet collision probability in dispersed two-phase flows. (ii) Corresponding results are compared for the first time with a particle tracking approach, post-processing high-speed shadowgraphy image sequences. Using the measured turbulence and droplet properties, the turbulent collision kernel can be calculated for comparison. The two independent measurements deliver comparable orders of magnitude for the collision probability, highlighting the quality of the measurement process, even if the comparison between both measurement techniques is still associated with a large uncertainty. Comparisons with recently published theoretical predictions show reasonable agreement. The theoretical collision rates accounting for collision efficiency are noticeably closer to the measured values than those accounting only for transport

    Revista de logopedia, foniatría y audiología

    No full text
    Resumen basado en el de la publicación. Resumen en inglésSe revisan algunos parámetros de la producción de la Revista de Logopedia, Foniatría y Audiología desde el año 2000, con especial incidencia en los dos últimos años. Los datos obtenidos se analizan en relación a tipo de publicaciones, universidad de origen del artículo, departamento universitario, procedencia del artículo nacional o internacional, así como a parámetros de calidad definidos por las agencias nacionales y en especial del Social Science Citation Index.CataluñaConsejería de Educación. Dirección General de Política Educativa; Calle Delgado Valencia, 6; 06800 Mérida (Badajoz); Tel. +34924006714; Fax +34924006716; [email protected]

    Experimental validation of numerical simulations on a cerebral aneurysm phantom model

    No full text
    The treatment of cerebral aneurysms, found in roughly 5% of the population and associated in case of rupture to a high mortality rate, is a major challenge for neurosurgery and neuroradiology due to the complexity of the intervention and to the resulting, high hazard ratio. Improvements are possible but require a better understanding of the associated, unsteady blood flow patterns in complex 3D geometries. It would be very useful to carry out such studies using suitable numerical models, if it is proven that they reproduce accurately enough the real conditions. This validation step is classically based on comparisons with measured data. Since in vivo measurements are extremely difficult and therefore of limited accuracy, complementary model-based investigations considering realistic configurations are essential. In the present study, simulations based on computational fluid dynamics (CFD) have been compared with in situ, laser-Doppler velocimetry (LDV) measurements in the phantom model of a cerebral aneurysm. The employed 1:1 model is made from transparent silicone. A liquid mixture composed of water, glycerin, xanthan gum and sodium chloride has been specifically adapted for the present investigation. It shows physical flow properties similar to real blood and leads to a refraction index perfectly matched to that of the silicone model, allowing accurate optical measurements of the flow velocity. For both experiments and simulations, complex pulsatile flow waveforms and flow rates were accounted for. This finally allows a direct, quantitative comparison between measurements and simulations. In this manner, the accuracy of the employed computational model can be checked

    A novel type of semi-active jet turbulence grid

    No full text
    This article describes a novel approach to generate increased turbulence levels in an incoming flow. It relies on a cost-effective and robust semi-active jet grid, equipped with flexible tubes as moving elements attached onto tube connections placed at the intersections of a fixed, regular grid. For the present study, these flexible tubes are oriented in counter-flow direction in a wind tunnel. Tube motion is governed by multiple interactions between the main flow and the jets exiting the tubes, resulting in chaotic velocity fluctuations and high turbulence intensities in the test section. After describing the structure of the turbulence generator, the turbulent properties of the airflow downstream of the grid in both passive and active modes are measured by hot-wire anemometry and compared with one another. When activating the turbulence generator, turbulence intensity, turbulent kinetic energy, and the Taylor Reynolds number are noticeably increased in comparison with the passive mode (corresponding to simple grid turbulence). Furthermore, the inertial subrange of the turbulent energy spectrum becomes wider and closely follows Kolmogorov's -5/3 law. These results show that the semi-active grid, in contrast to passive systems, is capable of producing high turbulence levels, even at low incoming flow velocity. Compared to alternatives based on actuators driven by servo-motors, the production and operation costs of the semi-active grid are very moderate and its robustness is much higher
    corecore