920 research outputs found
Structural basis of GTPase-mediated mitochondrial ribosome biogenesis and recycling
Ribosome biogenesis requires auxiliary factors to promote folding and assembly of ribosomal proteins and RNA. Particularly, maturation of the peptidyl transferase center (PTC) is mediated by conserved GTPases, but the molecular basis is poorly understood. Here, we define the mechanism of GTPase-driven maturation of the human mitochondrial large ribosomal subunit (mtLSU) using endogenous complex purification, in vitro reconstitution and cryo-EM. Structures of transient native mtLSU assembly intermediates that accumulate in GTPBP6-deficient cells reveal how the biogenesis factors GTPBP5, MTERF4 and NSUN4 facilitate PTC folding. Addition of recombinant GTPBP6 reconstitutes late mtLSU biogenesis in vitro and shows that GTPBP6 triggers a molecular switch and progression to a near-mature PTC state. Additionally, cryo-EM analysis of GTPBP6-treated mature mitochondrial ribosomes reveals the structural basis for the dual-role of GTPBP6 in ribosome biogenesis and recycling. Together, these results provide a framework for understanding step-wise PTC folding as a critical conserved quality control checkpoint
The role of marine reserves in achieving sustainable fisheries (One contribution of 15 to a Theme Issue 'Fisheries: a Future?')
Many fishery management tools currently in use have conservation value. They are designed to maintain stocks of commercially important species above target levels. However, their limitations are evident from continuing declines in fish stocks throughout the world. We make the case that to reverse fishery declines, safeguard marine life and sustain ecosystem processes, extensive marine reserves that are off limits to fishing must become part of the management strategy. Marine reserves should be incorporated into modern fishery management because they can achieve many things that conventional tools cannot. Only complete and permanent protection from fishing can protect the most sensitive habitats and vulnerable species. Only reserves will allow the development of natural, extended age structures of target species, maintain their genetic variability and prevent deleterious evolutionary change from the effects of fishing. Species with natural age structures will sustain higher rates of reproduction and will be more resilient to environmental variability. Higher stock levels maintained by reserves will provide insurance against management failure, including risk-prone quota setting, provided the broader conservation role of reserves is firmly established and legislatively protected. Fishery management measures outside protected areas are necessary to complement the protection offered by marine reserves, but cannot substitute for it
Recreational Fisheries in Biscayne National Park, Florida, 1976–19
Recreational creel survey data from 28,923 intercepts collected from Biscayne National Park, Florida and surrounding waters were analyzed for January 1976 through July 1991, prior to disruptions caused by Hurricane Andrew in 1992. A total of 261,268 fish and shellfish representing 170 species or higher taxa were recorded. The average trip landed 9.03 fish and/or shellfish. Mean annual landings per angler were 4.77 fish/angler/trip (from 3.8 in 1991 to 5.83 in 1981) and dropped significantly for each of the 2 years following Florida's adoption of mutiple new minimum size limits in 1985 and 1990. The relative contribution to total numerical landings by recreational party type were: skilled anglers (34.0%), food (19.8%), family (14.5%), novice (11.5%), spearfishing (10.3%), lobstering (9.6%), and other (0.3%). FIve species or higher taxa accounted for more than 50% of total landings by number: white grunt, Haemulon plumieri, 15.8%; spiny lobster, Panulirus argus, (10.6%; gray snapper, Lutjanus griseus, 10.6%; unidentified grunts, Haemulon spp., 7.3%; and dolphin, Coryphaena hippurus, 6.6%. An average of 4.39 fish or shellfish were reported released per trip. Five taxa accounted for 67% of all releases. Lobster divers reported the highest average release rate (5.73 per trip) and spearfishing the lowest (0.70 per trip). The ratio of releases to landings was 0.49:1 for all taxa, but ranged from 0.03:1 for dolphin to 1.19:1 for unidentified grunts. Spearfishing accounted for 12.0% of the total fishing trips sampled but only 10.3% of the total number organisms landed and 7.6% of all organisms caught. Hogfish, Lachnolaimus maximus, accounted for 49% if total spearfishing landings (13,286 of 27,015) and 84.3% of total 15,762 hogfish landed
An in vitro system to silence mitochondrial gene expression
The human mitochondrial genome encodes thirteen core subunits of the oxidative phosphorylation system, and defects in mitochondrial gene expression lead to severe neuromuscular disorders. However, the mech- anisms of mitochondrial gene expression remain poorly understood due to a lack of experimental ap- proaches to analyze these processes. Here, we present an in vitro system to silence translation in purified mitochondria. In vitro import of chemically synthesized precursor-morpholino hybrids allows us to target translation of individual mitochondrial mRNAs. By applying this approach, we conclude that the bicistronic, overlapping ATP8/ATP6 transcript is translated through a single ribosome/mRNA engagement. We show that recruitment of COX1 assembly factors to translating ribosomes depends on nascent chain formation. By defining mRNA-specific interactomes for COX1 and COX2, we reveal an unexpected function of the cytosolic oncofetal IGF2BP1, an RNA-binding protein, in mitochondrial translation. Our data provide insight into mitochondrial translation and innovative strategies to investigate mitochondrial gene expression
An investigation into the perspectives of providers and learners on MOOC accessibility
An effective open eLearning environment should consider the target learner’s abilities, learning goals, where learning takes place, and which specific device(s) the learner uses. MOOC platforms struggle to take these factors into account and typically are not accessible, inhibiting access to environments that are intended to be open to all. A series of research initiatives are described that are intended to benefit MOOC providers in achieving greater accessibility and disabled learners to improve their lifelong learning and re-skilling. In this paper, we first outline the rationale, the research questions, and the methodology. The research approach includes interviews, online surveys and a MOOC accessibility audit; we also include factors such the risk management of the research programme and ethical considerations when conducting research with vulnerable learners. Preliminary results are presented from interviews with providers and experts and from analysis of surveys of learners. Finally, we outline the future research opportunities. This paper is framed within the context of the Doctoral Consortium organised at the TEEM'17 conference
Epidemiology of and prenatal molecular distinction between invasive and colonizing group B streptococci in The Netherlands and Taiwan
The identification of markers for virulent group B streptococci (GBS) could guide prenatal prevention and intervention strategies. We compared the distribution of serotypes and potential pathogenicity islands (PPIs) between invasive and colonizing GBS. Colonizing and invasive strains from The Netherlands and Taiwan were serotyped. We used polymerase chain reaction (PCR) for the amplification of several new PPI markers. Several combinations of PPI-specific markers and serotypes were associated with invasiveness. For Dutch neonatal strains, a receiver operating characteristic (ROC) curve with serotype and five PPI markers showed an area under the curve (AUC) of 0.963 (95% confidence interval [CI] 0.935–0.99). For Taiwanese neonatal strains, serotype and four different PPI markers resulted in an ROC curve with an AUC of 0.894 (95% CI 0.826–0.963). PPI-specific and serological markers can distinguish local neonatal invasive GBS strains from colonizing ones. Apparently, there are clear regional differences in the GBS epidemiology and infection potential of clones
Mangroves enhance the biomass of coral reef fish communities in the Caribbean
Mangrove forests are one of the world's most threatened tropical ecosystems with global loss exceeding 35% (ref. 1). Juvenile coral reef fish often inhabit mangroves, but the importance of these nurseries to reef fish population dynamics has not been quantified. Indeed, mangroves might be expected to have negligible influence on reef fish communities: juvenile fish can inhabit alternative habitats and fish populations may be regulated by other limiting factors such as larval supply or fishing. Here we show that mangroves are unexpectedly important, serving as an intermediate nursery habitat that may increase the survivorship of young fish. Mangroves in the Caribbean strongly influence the community structure of fish on neighbouring coral reefs. In addition, the biomass of several commercially important species is more than doubled when adult habitat is connected to mangroves. The largest herbivorous fish in the Atlantic, Scarus guacamaia, has a functional dependency on mangroves and has suffered local extinction after mangrove removal. Current rates of mangrove deforestation are likely to have severe deleterious consequences for the ecosystem function, fisheries productivity and resilience of reefs. Conservation efforts should protect connected corridors of mangroves, seagrass beds and coral reefs
- …