220 research outputs found

    Molecular Feshbach dissociation as a source for motionally entangled atoms

    Full text link
    We describe the dissociation of a diatomic Feshbach molecule due to a time-varying external magnetic field in a realistic trap and guide setting. An analytic expression for the asymptotic state of the two ultracold atoms is derived, which can serve as a basis for the analysis of dissociation protocols to generate motionally entangled states. For instance, the gradual dissociation by sequences of magnetic field pulses may delocalize the atoms into macroscopically distinct wave packets, whose motional entanglement can be addressed interferometrically. The established relation between the applied magnetic field pulse and the generated dissociation state reveals that square-shaped magnetic field pulses minimize the momentum spread of the atoms. This is required to control the detrimental influence of dispersion in a recently proposed experiment to perform a Bell test in the motion of the two atoms [C. Gneiting and K. Hornberger, Phys. Rev. Lett. 101, 260503 (2008)].Comment: 12 pages, 3 figures; corresponds to published versio

    Aperture Integral Ultrasonic Pulse Transmission Model

    Get PDF
    This paper discusses a numerical algorithm and supporting formulation for evaluating ultrasonic pulse transmission through non-planar component geometries. The algorithm is engineered to model experimental configurations where irregularities in surface geometry preclude the use of less rigorous approaches, such as a field expansion about a single entry point. The algorithm formulation represents the transmitted pulse as a surface integral coinciding with a pulse origin aperture, employing the Green function for the water-component system. The model explicitly considers the component surface geometry over the footprint of the incident pulse, thus allowing consideration of smooth yet non-expandable (i.e. in power series about a single point) geometries, such as adjoining flat and fillet surfaces. A computationally efficient algorithm results from use of asymptotic Green function approximations. Approaches are also discussed under conditions where the asymptotic Green function expressions are singular or invalid, due to focusing by surface concavity or transmission near critical angles. Consideration of pulse time dependence represents an extension of previous work [1], as also does treatment of surface concavity and critical angle transmission. The following sections summarize theoretical formulation and algorithmic implementation, followed by the presentation of illustrative computations

    Echolocation by Quasiparticles

    Full text link
    It is shown that the local density of states (LDOS), measured in an Scanning Tunneling Microscopy (STM) experiment, at a single tip position contains oscillations as a function of Energy, due to quasiparticle interference, which is related to the positions of nearby scatterers. We propose a method of STM data analysis based on this idea, which can be used to locate the scatterers. In the case of a superconductor, the method can potentially distinguish the nature of the scattering by a particular impurity.Comment: 4+ page

    Regularization of fluctuations near the sonic horizon due to the quantum potential and its influence on the Hawking radiation

    Full text link
    We consider dynamics of fluctuations in transonically accelerating Bose-Einstein condensates and luminous liquids (coherent light propagating in a Kerr nonlinear medium) using the hydrodynamic approach. It is known that neglecting the quantum potential (QP) leads to a singular behavior of quantum and classical fluctuations in the vicinity of the Mach (sonic) horizon, which in turn gives rise to the Hawking radiation. The neglect of QP is well founded at not too small distances ∣x∣≫lh|x| \gg l_h from the horizon, where lhl_h is the healing length. Taking the QP into account we show that a second characteristic length lr>lhl_r > l_h exists, such that the linear fluctuation modes become regularized for ∣x∣≪lr|x| \ll l_r. At ∣x∣≫lr|x| \gg l_r the modes keep their singular behavior, which however is influenced by the QP. As a result we find a deviation of the high frequency tail of the spectrum of Hawking radiation from Planck's black body radiation distribution. Similar results hold for the wave propagation in Kerr nonlinear media where the length lhl_h and lrl_r exist due to the nonlinearity.Comment: 23 pages, 2 figure

    Entanglement dynamics via coherent-state propagators

    Full text link
    The dynamical generation of entanglement in closed bipartite systems is investigated in the semiclassical regime. We consider a model of two particles, initially prepared in a product of coherent states, evolving in time according to a generic Hamiltonian, and derive a formula for the linear entropy of the reduced density matrix using the semiclassical propagator in the coherent-state representation. The formula is explicitly written in terms of quantities that define the stability of classical trajectories of the underlying classical system. The formalism is then applied to the problem of two nonlinearly coupled harmonic oscillators and the result is shown to be in remarkable agreement with the exact quantum measure of entanglement in the short-time regime. An important byproduct of our approach is a unified semiclassical formula which contemplates both the coherent-state propagator and its complex conjugate.Comment: 10 page

    Landau functions for non-interacting bosons

    Full text link
    We discuss the statistics of Bose-Einstein condensation (BEC) in a canonical ensemble of N non-interacting bosons in terms of a Landau function L_N^{BEC} (q) defined by the logarithm of the probability distribution of the order parameter q for BEC. We also discuss the corresponding Landau function for spontaneous symmetry breaking (SSB), which for finite N should be distinguished from L_N^{BEC}. Only for intinite N BEC and SSB can be described by the same Landau function which depends on the dimensionality and on the form of the external potential in a surprisingly complex manner. For bosons confined by a three-dimensional harmonic trap the Landau function exhibits the usual behavior expected for continuous phase transitions.Comment: 4 pages, 4 figures; final version to appear as a rapid communication in Physical Review A. Abstract modified and typos correcte

    Dynamic interference of photoelectrons produced by high-frequency laser pulses

    Full text link
    The ionization of an atom by a high-frequency intense laser pulse, where the energy of a single-photon is sufficient to ionize the system, is investigated from first principles. It is shown that as a consequence of an AC Stark effect in the continuum, the energy of the photoelectron follows the envelope of the laser pulse. This is demonstrated to result in strong dynamic interference of the photoelectrons of the same kinetic energy emitted at different times. Numerically exact computations on the hydrogen atom demonstrate that the dynamic interference spectacularly modifies the photoionization process and is prominently manifested in the photoelectron spectrum by the appearance of a distinct multi-peak pattern. The general theory is shown to be well approximated by explicit analytical expressions which allow for a transparent understanding of the discovered phenomena and for making predictions on the dependence of the measured spectrum on the properties of the pulse.Comment: 5 figure

    Gender and Optimism as Predictors of Novice ESOL Teaching Performance

    Get PDF
    Both current and past research examining novice ESOL teachers has focused on issues such as educational background and classroom demographics (Yeo et al., 2008), but little research has focused on potential variables that influences perceived teaching performance. Consequently, the aim of this study is to examine the relationship between gender, optimism, and perceived teaching performance amongst novice ESOL teachers. Graduates from two hybrid TESOL graduate programs (N=47) were sampled and surveyed. Optimism significantly predicted perceived teaching performance, t(43)= 3.17, p=.003 and there was an marginal association between gender and perceived teaching performance, t(43)= -1.92, p=.06. Further analyses indicated that the mean ratings of teaching performance were significantly different between men and women, F(1, 45)= 5.12, p=.03. In sum, our results suggest that gender and optimism are factors in perceptions of teacher efficacy amongst novice ESOL teachers. The findings of this study with optimism, gender, and teaching performance not only add empirical data for this group, but also provides a platform to further examine this unique population

    A complex ray-tracing tool for high-frequency mean-field flow interaction effects in jets

    No full text
    This paper presents a complex ray-tracing tool for the calculation of high-frequency Green’s functions in 3D mean field jet flows. For a generic problem, the ray solution suffers from three main deficiencies: multiplicity of solutions, singularities at caustics, and the determining of complex solutions. The purpose of this paper is to generalize, combine and apply existing stationary media methods to moving media scenarios. Multiplicities are dealt with using an equivalent two-point boundary-value problem, whilst non-uniformities at caustics are corrected using diffraction catastrophes. Complex rays are found using a combination of imaginary perturbations, an assumption of caustic stability, and analytic continuation of the receiver curve. To demonstrate this method, the ray tool is compared against a high-frequency modal solution of Lilley’s equation for an off-axis point source. This solution is representative of high-frequency source positions in real jets and is rich in caustic structures. A full utilization of the ray tool is shown to provide excellent results<br/

    Representation of Quantum Mechanical Resonances in the Lax-Phillips Hilbert Space

    Get PDF
    We discuss the quantum Lax-Phillips theory of scattering and unstable systems. In this framework, the decay of an unstable system is described by a semigroup. The spectrum of the generator of the semigroup corresponds to the singularities of the Lax-Phillips SS-matrix. In the case of discrete (complex) spectrum of the generator of the semigroup, associated with resonances, the decay law is exactly exponential. The states corresponding to these resonances (eigenfunctions of the generator of the semigroup) lie in the Lax-Phillips Hilbert space, and therefore all physical properties of the resonant states can be computed. We show that the Lax-Phillips SS-matrix is unitarily related to the SS-matrix of standard scattering theory by a unitary transformation parametrized by the spectral variable σ\sigma of the Lax-Phillips theory. Analytic continuation in σ\sigma has some of the properties of a method developed some time ago for application to dilation analytic potentials. We work out an illustrative example using a Lee-Friedrichs model for the underlying dynamical system.Comment: Plain TeX, 26 pages. Minor revision
    • …
    corecore