3,367 research outputs found

    Do You Want to Be an Organ Donor? Why Question Order and Straightlining Matter

    Get PDF
    This trio of studies is designed to investigate a possible means of increasing donor registration rates, as doing so can save lives by increasing the number of registered organ donors. Many Motor Vehicle Departments (MVDs) ask a series of probing health and legal questions prior to asking visitors about registering as an organ donor. This practice may diminish registration because of straightlining, a type of satisficing, which is a common problem in survey research where respondents do not give the most accurate response, often in an attempt to diminish effort. When straightlining, some individuals may not register as an organ donor simply because they did not notice they were being asked to register, even if they support organ donation. The first study was an MTurk experiment that found that moving the registration question from last to first position within a series of probing questions significantly affected how often individuals expressed willingness to register as a donor. Study 1 found an order effect online for both donors (OR = 2.57) and non-donors (OR = 2.01). Study 2 took advantage of a decision by New Mexico MVDs to move their donor question from after a series of health and legal questions to before it. Thus, Study 2 served as a conceptual replication of the first study, by using secondary data to examine this change\u27s effect on registration behavior in the Department of Motor Vehicles in New Mexico. This change in question location occurred on April 2, 2020. Unfortunately, this was within two weeks of a statewide stay-at-home order due to the COVID-19 pandemic. As this, this represents a critical history effect, it serves as a rival explanation for all the results from Study 2. Not all analyses indicated meaningful results, but when controlling for an overall decline in registrations, this downward trend was attenuated by the change in question position. Additionally, both prior donor and non-donor visitors to the MVD were more likely to re-affirm their previously selected donor statuses. However, these effects could have been the result of the pandemic. Study 3 replicated the order effects observed in Study 1 for the donors, but did not find this effect among the non-donors. Study 3 also added an examination of instructional manipulations to see if it was possible to assuage the tendency to straightline using different instructional manipulations on MTurk. One instruction focused on real-world implications—that when asked to register as a donor, this represents placement on the donor registry. This approach may be applicable for use in MVDs, and was expected to be effective for individuals who already possess extremely favorable attitudes about registration. The other approach was based on equity theory and was expected to be especially helpful in online research contexts. However, this experiment did not find support for the use of these instructional manipulations. Taken together, these studies shed important insight into how question order influences organ donation registration willingness. Across Studies 1 and 3, there was evidence that the order in which the donor registration question is asked influences donor registration rates for donors, as well as for those who are paying the least attention. This dissertation did not conclusively observe the same effect for those who are not registered donors. Thus, when it is possible to do so, listing the donor question prior to any other health and legal questions may increase willingness to register

    Bi-large Neutrino Mixing and CP violation in an SO(10) SUSY GUT for Fermion Masses

    Full text link
    We construct a simple SO(10) SUSY GUT with D3D_3 family symmetry and low energy R parity. The model describes fermion mass matrices with 14 parameters and gives excellent fits to 20 observable masses and mixing angles in both quark and lepton sectors, giving 6 predictions. Bi-large neutrino mixing is obtained with hierarchical quark and lepton Yukawa matrices; thus avoiding the possibility of large lepton flavor violation. The model naturally predicts small 1-3 neutrino mixing, sinθ130.05\sin \theta_{13} \simeq 0.05, and a CP violating phase δ\delta close to π/2\pi/2. Among other interesting predictions is a tiny effective Majorana mass for neutrinoless double-beta decay. Leptogenesis is also possible with the decay of the lightest right-handed neutrino giving an acceptable CP violating asymmetry ϵ1\epsilon_1 of order 10610^{-6}, {\em and with the correct sign for the resultant baryon asymmetry}. We also show how similar models with the non-abelian symmetry groups SU(2) or D4D_4, instead of D3D_3, can be constructed.Comment: 16 pages, resubmitted as a PLB letter, appendices were remove

    Assessment of Human Hemodynamics under Hyper- and Microgravity: Results of two Aachen University Parabolic Flight Experiments

    Get PDF
    Astronauts complain about fluid shifts from their lower extremities to their head caused by weightlessness during their flight into space. For a study of this phenomenon, RWTH Aachen University and Charité University Berlin participated in a joint project on two parabolic flight campaigns of the German Aerospace Centre (DLR) in September 2005 and June 2006. During these campaigns, the characteristics of the rapid fluid shifts during hyper- and micro gravity were measured by a combination of PPG and PPGI optoelectronic sensor concepts.

    Reconstruction of the optical potential from scattering data

    Full text link
    We propose a method for reconstruction of the optical potential from scattering data. The algorithm is a two-step procedure. In the first step the real part of the potential is determined analytically via solution of the Marchenko equation. At this point we use a diagonal Pad\'{e} approximant of the corresponding unitary SS-matrix. In the second step the imaginary part of the potential is determined via the phase equation of the variable phase approach. We assume that the real and the imaginary parts of the optical potential are proportional. We use the phase equation to calculate the proportionality coefficient. A numerical algorithm is developed for a single and for coupled partial waves. The developed procedure is applied to analysis of 1S0^{1}S_{0} NNNN, 3SD1^{3}SD_{1} NNNN, P31P31 πN\pi^{-} N and S01S01 K+NK^{+}N data.Comment: 26 pages, 8 figures, results of nucl-th/0410092 are refined, some new results are presente

    The sources of sex differences in aging in annual fishes

    Get PDF
    Intersexual differences in life span (age at death) and aging (increase in mortality risk associated with functional deterioration) are widespread among animals, from nematodes to humans. Males often live shorter than females, but there is substantial unexplained variation among species and populations. Despite extensive research, it is poorly understood how life span differences between the sexes are modulated by an interplay among genetic, environmental and social factors. The goal of our study was to test how sex differences in life span and ageing are modulated by social and environmental factors, and by intrinsic differences between males and females. To disentangle the complex basis of sex differences in life span and aging, we combined comparative data from sex ratios in 367 natural populations of four species of African annual killifish with experimental results on sex differences in life span and aging from eight laboratory populations tested in treatments that varied social and environmental conditions. In the wild, females consistently outlived males. In captivity, sex-specific mortality depended on social conditions. In social-housed experimental groups, male-biased mortality persisted in two aggressive species, but ceased in two placid species. When social and physical contacts were prevented by housing all fish individually, male-biased mortality ceased in all four species. This outcome held across benign and challenging environmental conditions. Fitting demographic survival models revealed that increased baseline mortality was primarily responsible for a shorter male life span in social-housing conditions. The timing and rate of aging were not different between the sexes. No marker of functional aging we recorded in our study (lipofuscin accumulation, proliferative changes in kidney and liver) differed between males and females, despite their previously confirmed association with functional aging in Nothobranchius killifish. We show that sex differences in life span and aging in killifish are driven by a combination of social and environmental conditions, rather than differential functional aging. They are primarily linked to sexual selection but precipitated through multiple processes (predation, social interference). This demonstrates how sex-specific mortality varies among species even within an ecologically and evolutionary discrete lineage and explains how external factors mediate this difference

    Testing Yukawa-unified SUSY during year 1 of LHC: the role of multiple b-jets, dileptons and missing E_T

    Get PDF
    We examine the prospects for testing SO(10) Yukawa-unified supersymmetric models during the first year of LHC running at \sqrt{s}= 7 TeV, assuming integrated luminosity values of 0.1 to 1 fb^-1. We consider two cases: the Higgs splitting (HS) and the D-term splitting (DR3) models. Each generically predicts light gluinos and heavy squarks, with an inverted scalar mass hierarchy. We hence expect large rates for gluino pair production followed by decays to final states with large b-jet multiplicity. For 0.2 fb^-1 of integrated luminosity, we find a 5 sigma discovery reach of m(gluino) ~ 400 GeV even if missing transverse energy, E_T^miss, is not a viable cut variable, by examining the multi-b-jet final state. A corroborating signal should stand out in the opposite-sign (OS) dimuon channel in the case of the HS model; the DR3 model will require higher integrated luminosity to yield a signal in the OS dimuon channel. This region may also be probed by the Tevatron with 5-10 fb^-1 of data, if a corresponding search in the multi-b+ E_T^miss channel is performed. With higher integrated luminosities of ~1 fb^-1, using E_T^miss plus a large multiplicity of b-jets, LHC should be able to discover Yukawa-unified SUSY with m(gluino) up to about 630 GeV. Thus, the year 1 LHC reach for Yukawa-unified SUSY should be enough to either claim a discovery of the gluino, or to very nearly rule out this class of models, since higher values of m(gluino) lead to rather poor Yukawa unification.Comment: 32 pages including 31 EPS figure

    Lepton Flavor Violating Processes and Muon g-2 in Minimal Supersymmetric SO(10) Model

    Full text link
    In the recently proposed minimal supersymmetric SO(10) model, the neutrino Dirac Yukawa coupling matrix, together with all the other fermion mass matrices, is completely determined once free parameters in the model are appropriately fixed so as to accommodate the recent neutrino oscillation data. Using this unambiguous neutrino Dirac Yukawa couplings, we calculate the lepton flavor violating (LFV) processes and the muon g-2 assuming the minimal supergravity scenario. The resultant rates of the LFV processes are found to be large enough to well exceed the proposed future experimental bound, while the magnitude of the muon g-2 can be within the recent result by Brookhaven E821 experiment. Furthermore, we find that there exists a parameter region which can simultaneously realize the neutralino cold dark matter abundance consistent with the recent WMAP data.Comment: 18 pages, 10 figures. The version to be published in Phys. Rev.

    Yukawa-unified natural supersymmetry

    Get PDF
    Previous work on t-b-\tau Yukawa-unified supersymmetry, as expected from SUSY GUT theories based on the gauge group SO(10), tended to have exceedingly large electroweak fine-tuning (EWFT). Here, we examine supersymmetric models where we simultaneously require low EWFT ("natural SUSY") and a high degree of Yukawa coupling unification, along with a light Higgs scalar with m_h\sim125 GeV. As Yukawa unification requires large tan\beta\sim50, while EWFT requires rather light third generation squarks and low \mu\sim100-250 GeV, B-physics constraints from BR(B\to X_s\gamma) and BR(B_s\to \mu+\mu-) can be severe. We are able to find models with EWFT \Delta\lesssim 50-100 (better than 1-2% EWFT) and with Yukawa unification as low as R_yuk\sim1.3 (30% unification) if B-physics constraints are imposed. This may be improved to R_yuk\sim1.2 if additional small flavor violating terms conspire to improve accord with B-constraints. We present several Yukawa-unified natural SUSY (YUNS) benchmark points. LHC searches will be able to access gluinos in the lower 1-2 TeV portion of their predicted mass range although much of YUNS parameter space may lie beyond LHC14 reach. If heavy Higgs bosons can be accessed at a high rate, then the rare H, A\to \mu+\mu- decay might allow a determination of tan\beta\sim50 as predicted by YUNS models. Finally, the predicted light higgsinos should be accessible to a linear e+e- collider with \sqrt{s}\sim0.5 TeV.Comment: 18 pages, 7 figures, pdflatex; 3 references adde

    EGCG from different sources: differential stability and effects on treating bone phenotypes related to Down syndrome

    Get PDF
    poster abstractDown Syndrome (DS) is a genetic disorder caused by trisomy of human chromosome 21 (Hsa21). DS phenotypes include cognitive impairment, craniofacial abnormalities, low muscle tone, and skeletal deficiencies. The Ts65Dn mouse model exhibits similar phenotypes as found in humans with DS, including deficits in skeletal bone. Over-expression of DYRK1A, a serine-threonine kinase encoded on Hsa21, has been linked to deficiencies in DS bone homeostasis. Epigallocatechin-3-gallate (EGCG), an aromatic polyphenol found in green tea (GT), is a known inhibitor of Dyrk1a activity. Normalization of Dyrk1a activity by EGCG may have the potential to regulate bone homeostasis, by increasing bone mineral density (BMD) and bone strength. We hypothesized that EGCG obtained from different vendors would differ in stability as well as success in ameliorating skeletal deficiencies. EGCG from different sources was subjected to degradation analysis because of its low bioavailability due to strong antioxidative characteristics. We also hypothesized that phosphoric acid would stabilize EGCG and prevent breakdown in an aqueous solution. We performed High Performance Liquid Chromatography–Mass Spectrometry (HPLC-MS) on EGCG from different sources to determine the amount of EGCG degradation in solution. Our analyses showed differential stability in EGCG from different sources or with phosphoric acid. We chose EGCG from three sources to test the hypothesis that these compounds would have differing effects treating bone phenotypes associated with DS. Three-week-old Ts65Dn and control male mice were treated with EGCG for three weeks. At six weeks of age, mice were sacrificed and femurs were extracted. BMD, bone strength, as well as architecture of the femur were assessed. Our results indicate that EGCG from different sources has diverse effects on the correction of bone phenotypes associated with DS. Our work is important to understand how EGCG from different sources may affect DS phenotypes as the EGCG is translated to human use
    corecore