35 research outputs found

    One-sided versus two-sided stochastic descriptions

    Get PDF
    It is well-known that discrete-time finite-state Markov Chains, which are described by one-sided conditional probabilities which describe a dependence on the past as only dependent on the present, can also be described as one-dimensional Markov Fields, that is, nearest-neighbour Gibbs measures for finite-spin models, which are described by two-sided conditional probabilities. In such Markov Fields the time interpretation of past and future is being replaced by the space interpretation of an interior volume, surrounded by an exterior to the left and to the right. If we relax the Markov requirement to weak dependence, that is, continuous dependence, either on the past (generalising the Markov-Chain description) or on the external configuration (generalising the Markov-Field description), it turns out this equivalence breaks down, and neither class contains the other. In one direction this result has been known for a few years, in the opposite direction a counterexample was found recently. Our counterexample is based on the phenomenon of entropic repulsion in long-range Ising (or "Dyson") models.Comment: 13 pages, Contribution for "Statistical Mechanics of Classical and Disordered Systems

    On the convergence of cluster expansions for polymer gases

    Full text link
    We compare the different convergence criteria available for cluster expansions of polymer gases subjected to hard-core exclusions, with emphasis on polymers defined as finite subsets of a countable set (e.g. contour expansions and more generally high- and low-temperature expansions). In order of increasing strength, these criteria are: (i) Dobrushin criterion, obtained by a simple inductive argument; (ii) Gruber-Kunz criterion obtained through the use of Kirkwood-Salzburg equations, and (iii) a criterion obtained by two of us via a direct combinatorial handling of the terms of the expansion. We show that for subset polymers our sharper criterion can be proven both by a suitable adaptation of Dobrushin inductive argument and by an alternative --in fact, more elementary-- handling of the Kirkwood-Salzburg equations. In addition we show that for general abstract polymers this alternative treatment leads to the same convergence region as the inductive Dobrushin argument and, furthermore, to a systematic way to improve bounds on correlations

    The Analyticity of a Generalized Ruelle's Operator

    Full text link
    In this work we propose a generalization of the concept of Ruelle operator for one dimensional lattices used in thermodynamic formalism and ergodic optimization, which we call generalized Ruelle operator, that generalizes both the Ruelle operator proposed in [BCLMS] and the Perron Frobenius operator defined in [Bowen]. We suppose the alphabet is given by a compact metric space, and consider a general a-priori measure to define the operator. We also consider the case where the set of symbols that can follow a given symbol of the alphabet depends on such symbol, which is an extension of the original concept of transition matrices from the theory of subshifts of finite type. We prove the analyticity of the Ruelle operator and present some examples

    Cluster and virial expansions for the multi-species tonks gas

    Get PDF
    We consider a mixture of non-overlapping rods of different lengths ℓk moving in R or Z. Our main result are necessary and sufficient convergence criteria for the expansion of the pressure in terms of the activities zk and the densities ρk. This provides an explicit example against which to test known cluster expansion criteria, and illustrates that for non-negative interactions, the virial expansion can converge in a domain much larger than the activity expansion. In addition, we give explicit formulas that generalize the well-known relation between non-overlapping rods and labelled rooted trees. We also prove that for certain choices of the activities, the system can undergo a condensation transition akin to that of the zero-range process. The key tool is a fixed point equation for the pressure

    Duality Theorems in Ergodic Transport

    Full text link
    We analyze several problems of Optimal Transport Theory in the setting of Ergodic Theory. In a certain class of problems we consider questions in Ergodic Transport which are generalizations of the ones in Ergodic Optimization. Another class of problems is the following: suppose σ\sigma is the shift acting on Bernoulli space X={0,1}NX=\{0,1\}^\mathbb{N}, and, consider a fixed continuous cost function c:X×XRc:X \times X\to \mathbb{R}. Denote by Π\Pi the set of all Borel probabilities π\pi on X×XX\times X, such that, both its xx and yy marginal are σ\sigma-invariant probabilities. We are interested in the optimal plan π\pi which minimizes cdπ\int c d \pi among the probabilities on Π\Pi. We show, among other things, the analogous Kantorovich Duality Theorem. We also analyze uniqueness of the optimal plan under generic assumptions on cc. We investigate the existence of a dual pair of Lipschitz functions which realizes the present dual Kantorovich problem under the assumption that the cost is Lipschitz continuous. For continuous costs cc the corresponding results in the Classical Transport Theory and in Ergodic Transport Theory can be, eventually, different. We also consider the problem of approximating the optimal plan π\pi by convex combinations of plans such that the support projects in periodic orbits

    Convergence of density expansions of correlation functions and the Ornstein-Zernike equation

    Get PDF
    We prove absolute convergence of the multi-body correlation functions as a power series in the density uniformly in their arguments. This is done by working in the context of the cluster expansion in the canonical ensemble and by expressing the correlation functions as the derivative of the logarithm of an appropriately extended partition function. In the thermodynamic limit, due to combinatorial cancellations, we show that the coeffi- cients of the above series are expressed by sums over some class of two-connected graphs. Furthermore, we prove the convergence of the density expansion of the “direct correlation function” which is based on a completely different approach and it is valid only for some inte- gral norm. Precisely, this integral norm is suitable to derive the Ornstein-Zernike equation. As a further outcome, we obtain a rigorous quantification of the error in the Percus-Yevick approximation

    An improvement of the Lovász local lemma via cluster expansion

    No full text
    An old result by Shearer relates the Lov´asz Local Lemma with the independent set polynomial on graphs, and consequently, as observed by Scott and Sokal, with the partition function of the hard core lattice gas on graphs. We use this connection and a recent result on the analyticity of the logarithm of the partition function of the abstract polymer gas to get an improved version of the Lov´asz Local Lemma. As applications we obtain tighter bounds on conditions for the existence of latin transversal matrices and the satisfiability of k-SAT forms

    Sufficient Conditions for Uniform Bounds in Abstract Polymer Systems and Explorative Partition Schemes

    No full text
    We present several new sufficient conditions for uniform boundedness of the reduced correlations and free energy of an abstract polymer system in a complex multidisc around zero fugacity. They resolve a discrepancy between two incomparable and previously known extensions of Dobrushin’s classic condition. All conditions arise from an extension of the tree-operator approach introduced by Fernández and Procacci combined with a novel family of partition schemes of the spanning subgraph complex of a cluster. The key technique is the increased transfer of structural information from the partition scheme to a tree-operator on an enhanced space
    corecore