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Convergence of Density Expansions of
Correlation Functions and the Ornstein–
Zernike Equation

Tobias Kuna and Dimitrios Tsagkarogiannis

Abstract. We prove absolute convergence of the multi-body correlation
functions as a power series in the density uniformly in their arguments.
This is done by working in the context of the cluster expansion in the
canonical ensemble and by expressing the correlation functions as the de-
rivative of the logarithm of an appropriately extended partition function.
In the thermodynamic limit, due to combinatorial cancellations, we show
that the coefficients of the above series are expressed by sums over some
class of two-connected graphs. Furthermore, we prove the convergence of
the density expansion of the “direct correlation function” which is based
on a completely different approach and it is valid only for some integral
norm. Precisely, this integral norm is suitable to derive the Ornstein–
Zernike equation. As a further outcome, we obtain a rigorous quantifica-
tion of the error in the Percus–Yevick approximation.

1. Introduction

Correlation functions of interacting particle systems provide important infor-
mation of the macroscopic as well as the microscopic properties of the system.
This was well captured already in the literature in the 30’s, see [20]. Around
the same period, with the development of power series expansions by Mayer
and Mayer [27], a direct perturbative representation of correlation functions in
terms of integrals over configurations associated with a graphical expansion has
been suggested in [28], where the density expansion of the n-body correlation
function has been derived. However, being perturbative expansions around the
ideal gas, the density expansions of the correlation functions are not expected
to be valid at the densities of the liquid regime. So, one tries to develop a
theory of classical fluids without using the density expansion formulas, [32].

http://crossmark.crossref.org/dialog/?doi=10.1007/s00023-018-0655-9&domain=pdf
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A candidate for deriving such relations is the original Ornstein–Zernike
(OZ) equation, [35], which, however, cannot be solved as an equation as it
contains two unknown quantities, namely the correlation function and the di-
rect correlation function. Hence, one has to postulate a relation between them,
that is what one calls a closure scheme. A lot of effort has been made in this
direction, and various suggestions have appeared. Stell [47] systematically re-
lates the most popular closure schemes (such as the Born–Green–Yvon (BGY)
hierarchy, [6,49], the Hyper-Netted Chain (HNC) and the Percus–Yevick (PY)
equation [38]) to graphical expansions and tries to quantify them in this way.
Ever since an enormous body of works was created, which by now is a standard
tool in liquid state theory, see e.g. [17]. Furthermore, there is recent interest
in developing coarse–graining methods based on this theory, see for example
[29,33,34].

However, in [47], it is also acknowledged that the manipulations involved
in obtaining these infinite sums. . . have been carried out in a purely formal way
and we have not examined the important but difficult questions of convergence
and the legitimacy of the rearrangement of terms. The convergence of the ac-
tivity expansion of the pressure and the truncated correlation functions for
stable potentials integrable at infinity is well established since the ’60s. A first
result about rearrangement of terms in the above sense immediately followed;
Lebowitz and Penrose [23] showed that the resumming to achieve expansions
in the density from expansions in the activity can be justified rigorously for the
free energy and a lower estimate for the radius of convergence of the density
expansion was also given. The analogous result for the expansion of the trun-
cated correlation function is sketched, we discuss its limitations below. Other
resummings had to the best of our knowledge not been considered. The present
paper is a first step in picking up this line of research by studying the con-
vergence of the expansion of the n-body correlation function and of the direct
correlation function. Note that the latter cannot be directly expressed as an
expansion of the activity and following the line of argument in [23] seems more
involved. Contrary to the previous approach, we work directly in the canoni-
cal ensemble (which is natural for density expansions) and control for the first
time directly a cluster expansion based on 2-connected graphs. In a first step,
we relate the correlation functions to an extended partition function and we
obtain the result as a consequence of the validity of the cluster expansion of
the free energy in the canonical ensemble. However, more delicate estimates
are needed in order to control the density expansion of the “direct correlation
function” and to establish the validity of the Ornstein–Zernike equation.

Before we discuss the aforementioned problems and previous works in
more detail, let us state the main results of this paper

1. Absolute convergence of the density expansion for the truncated corre-
lation functions uniformly in the arguments of the correlation function,
with essentially the same radius of convergence as for the activity expan-
sion.
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2. The rigorous derivation of the graphical representation of the density
expansion of the truncated correlation function by some class of two-
connected graphs.

3. The convergence of the density expansion (in the thermodynamic limit)
of the direct correlation function in the L1 sense in the difference of the
arguments. Furthermore, we show that this type of convergence implies
that the direct correlation function defined via its expansion solves the
OZ equation in the thermodynamic limit.

4. The order of the error term in the closure which gives rise to the Percus–
Yevick equation is rigorously derived.

Note that the convergence in (1) holds also in the L1-sense and one can show
it by following the line of proof presented later in the paper.

Let us discuss the points raised above in more detail. The first math-
ematically rigorous construction of the correlation functions in the thermo-
dynamic limit was obtained in the high-temperature and low-density regime
in [4] based on a fixed-point argument for the Kirkwood–Salsburg (KS) equa-
tions. Then, further progress has been made in the 60’s starting with the works
of Groeneveld, Penrose and Ruelle. Ruelle [45] used a fixed-point argument,
while Penrose uses an iteration of the (KS) equations in [36]. Closely related,
in [37] Penrose introduced the so-called tree-graph estimate, further developed
in [7], cf. also [41] and references therein for recent progress. After the 60’s,
the technique of cluster expansion has been further developed and its validity
has been established for a large class of different systems, for example with
the introduction of the abstract polymer model [16,21]. We refer to [13] for
a review of the different sufficient conditions for convergence. For the case of
the classical gas, all results are based on the grand-canonical ensemble as the
techniques that have been used exploit the infinite sum over the number of
particles. However, in this paper, we are considering expansion in the density.
The coefficients of this expansion were identified as sums over 2-connected
graphs already in the 40’s, cf. [27].

In order to derive from the expansion in the activity an expansion in
the density, two further steps are required, as in any resumming: first, some
“inversion” theorem from analytic function theory in order to show the con-
vergence of the density expansion and second a combinatorial relation between
graphs, e.g. a “topological reduction” in the language of Stell, to identify the
coefficients in the density expansions. Part of the latter is to check the ad-
missibility of the rearrangement of terms in the series necessary to realize the
combinatorial relations. In general, this is an issue because the series in the
graphs is only conditionally convergent. For Mayer’s combinatorial identities
[27] this is not an issue due to the iterative structure leading in each order to
finite many identities. For details as well as for a lower bound on the radius of
convergence, see [23]. See also [40] for a recent improvement mainly for poten-
tials with negative part. For the multi-species case see [48] as well as [19]. In
[25] this relation between graphs is put in the systematic context of operations
between combinatorial “species”.
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In [23], it was also pointed out that one can derive the convergence of the
correlation functions following similar arguments as for the free energy. The
coefficients a

(n)
k of the density expansion of the truncated correlation functions

u(n)(q1, . . . , qn) = ρn
∑∞

k=0 ρka
(n)
k (q1, . . . , qn) are themselves functions of the

position. A straightforward application of the arguments from [23] gives only
convergence for fixed q1, . . . , qn. However, in order to work with the expan-
sion, e.g. in order to show that it satisfies the Ornstein–Zernike equation, one
needs that the series is absolutely convergent with respect to the uniform norm
in the arguments or the L1-norm, that is

∑∞
k=0 ρk

∫
Rd(n−1) |a(n)

k (0, q2, . . . , qn)|
dq2 . . . dqn < ∞ (due to translation invariance). It may be possible to achieve
this also via an indirect proof in the spirit of [23], but to the best of our
knowledge it has not been presented in detail. This issue is also relevant for
the sketch of the proof in [1], where the authors exploit the finite range of the
considered potentials by examining analyticity in the Fourier space. However,
this argument requires the stronger sense of convergence in L1-norm (explained
above) in order to connect the Fourier transform of the series in density with
the series of the Fourier transform of its summands.

In this paper, we follow a direct and natural approach to obtain the den-
sity expansion starting from the canonical ensemble. In [42] the validity of the
cluster expansion in the canonical ensemble has been established for the free
energy combining the cluster expansion techniques for abstract polymer model
and tree-graph estimates for particle systems. Because of the latter, no signif-
icant improvement for the radius of convergence for the virial expansion over
the activity expansion was achieved. Extending these techniques, in this paper,
we prove the convergence of the density expansions for both the correlation
and the direct correlation function working directly in the canonical ensemble.
Here, it is worthwhile to note that the direct correlation functions is quite dif-
ferent from the truncated correlation functions. First, there exists no natural
graphical expansion for the direct correlation function in the activity. Second,
even in the density, we are not aware of a natural expansion of the direct
correlation function in finite volume, but one can define an expansion which
is at least correct in the thermodynamical limit. Third, we prove directly the
convergence of this expansion which is represented by two-connected graphs
without using any thermodynamical relations. One may expect that expan-
sions given by classes of more connected graphs give leading terms which are
more relevant, however convergence proofs, since based on combinatorial re-
lations, are much harder to obtain. In fact, there is no known analogue of
the tree-graph inequality for two-connected graphs. We bypass this by using
the new technique of [42] developed for the canonical ensemble. However, the
direct correlation function is an example of an object that is not a thermo-
dynamical object in the canonical ensemble, but the technique is nevertheless
applicable. The choice of norm (in the position variables qi) is crucial for that.
Working with an integral norm allows us to combine translation invariance and
combinatorial cancellations (see Lemma 5.2). The main benefit of the direct
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approach is that it elucidates how the derivation of convergence is intrinsi-
cally related to the underlying combinatorial structure of the graphs in the
formal computations in Stell. For the supremum norm the cancellations which
are essential for the proof do not seem to hold. “Miraculously”, the integral
norm is exactly what is required to prove the validity of the Ornstein–Zernike
equation.

In liquid state theory, as discussed above, several closures for the
Ornstein–Zernike equation have been suggested. Moreover, starting from the
grand-canonical ensemble, a wide range of expansions for various thermody-
namic quantities have been investigated, see the systematic presentation of his
and earlier works of others (e.g. [11,31]) by G. Stell in his seminal work in
[46]. His approach is mainly based on the tools of functional differentiation
and re-summations of the cluster expansion, or “topological reduction” as he
calls it. The first was already used in [3], analogously to the use of generat-
ing functionals for stochastic processes. Note also that in one of these earlier
works, Hiroike and Morita suggest that using more complex re-summations
the theory of classical fluids may be constructed with the knowledge of the pair
distribution function alone, even if a form of the pair interaction potential is
not known. This is also closely related to the inverse or realizability problem,
where one seeks to find a priori properties of the correlation function, see [22]
and the references therein. All these considerations are purely formal; it is not
even in the high-temperature and low-density regime a priori clear that these
calculations can be made rigorous. At least in this regime, as a by-product of
the validity of the convergence for the expansions proved here, we can evaluate
the error in closure schemes such as the Percus–Yevick equation, rigorously.
The approximation is correct up to the order of ρ2, as expected. Note that
this scheme gives rise to approximations that are not as simple as restricting
to the leading order, quite the contrary; a systematic rule is given on how
to select terms from all orders. As series in the graphs, the expansions are
only conditionally converging and hence the evaluation of the error is not a
direct consequence of the convergence of the activity or density expansion of
the truncated correlation functions. Trying to construct closures with higher
order error, as already suggested in [47], is more complicated. This is left for
the future together with the quest of an expansion that can be valid in the
liquid regime.

The structure of this paper is as follows: In Sect. 2, we present the model
and the main results. Referring to the list given above, item (1) is based on the
definition of the truncated correlation functions via the generating functional
for correlation functions, which allows us to relate it to the abstract polymer
model and derive the convergence result from the general theorem of cluster
expansion cf. Theorem 2.1 for a representation of the correlation function
in a weak form and 2.7 for the pointwise representation. This is proved in
Sects. 3 and 4, respectively. As expected, the range of convergence is strictly
inside the gas phase; it is the same for both expansions and it can be easily
improved along the line of [30]. The proof of item (2) is given in Sect. 4. It
requires a modification of the cancellations derived in [42] taking into account
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the difference in the combinatorial structure. Another crucial property is the
splitting property (4.16) which is based on translation invariance. Even though
the correlation functions break the translation invariance of the expansion, the
splitting property is preserved. Item (3) requires a re-definition of the activity
in the abstract polymer representation in order to show convergence when one
of the two arguments of the direct correlation function is considered in the
L1 norm, as shown in Sect. 5. We conclude with Sects. 6 and 7. In Sect. 6,
we discuss the connections to combinatorial identities. In fact, the different
expansions in [46] have a strong combinatorial flavour. The results of this
paper are applied to liquid state theory in Sect. 7 and are to be investigated
further in upcoming works. Moreover, as a by-product, we also prove item (4).

2. The Model and the Results

We study a system consisting out of N indistinguishable particles described
by a configuration q:={q1, . . . , qN} (where qi is the position of the ith particle)
confined in a box Λ(�):=(− �

2 , �
2 ]d ⊂ R

d (for some � > 0), which we will also
denote for short by Λ when we do not need to explicit the dependence on �.
For simplicity, we consider periodic boundary conditions, that is, we identify
opposite sides of the square Λ to obtain a torus. The effect of other boundary
conditions is left for future studies. The particles interact via a (translation
invariant) pair potential V : R

d → R ∪ {∞}, which is stable, integrable at
infinity and V (q) = V (−q). A potential V is called stable, whenever there
exists B ≥ 0 such that:

∑

1≤i<j≤N

V (qi − qj) ≥ −BN, (2.1)

for all N and all q1, . . . , qN . In particular, bounded below. A potential V is
called regular, whenever

C(β):=
∫

Rd

|e−βV (q) − 1|dq < ∞. (2.2)

The latter condition holds for a potential bounded below if and only if∫
Rd |V (q) ∧ 1|dq < ∞. The hardcore potential fulfils all these assumptions

with C(β,R) = |BR(0)|, the volume of the ball with radius the interaction
range R.

The energy of the system HΛ is defined as

HΛ(q):=
∑

1≤i<j≤N

V (qi,j), (2.3)

where qi,j denotes among the vectors qi − qj + n�, for n ∈ Z
d, the one with

minimal length. The length of qi,j is equal to the geodesic distance of qi and
qj on the torus.
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2.1. Thermodynamic Functions and Partition Functions

The associated canonical partition function of the system described above is
given by

Zβ,Λ,N :=
1

N !

∫

ΛN

dq1 . . . dqN e−βHΛ(q). (2.4)

Given ρ > 0, the density, we define the thermodynamic free energy in the
thermodynamic limit by

fβ(ρ):= lim
Λ↑R

d, N→∞,
N=�ρ|Λ|�

fβ,Λ,N , where fβ,Λ,N := − 1
β|Λ| log Zβ,Λ,N , (2.5)

where |Λ| is the volume of Λ. The limit exists for suitable sequences of volumes
Λ and is actually independent of the boundary condition [14,15].

The associated canonical ensemble in the volume Λ is defined for a mea-
surable set C ⊂ R

dN by

μβ,Λ,N (C):=
1

Zβ,Λ,N

1
N !

∫

ΛN∩C

dq1 . . . dqN e−βHΛ(q). (2.6)

We introduce some relevant quantities in statistical mechanics to be stud-
ied next. Given a test function φ we define the Bogoliubov functional LB(φ)
in the canonical ensemble, in analogy to the definition in the grand-canonical
ensemble (by considering the grand-canonical measure restricted to the N -
particle sector), see [3], equation (2.11):

LB(φ):=
∫

ΛN

N∏

k=1

(1 + φ(qk))μβ,Λ,N (dq). (2.7)

This is the generating functional of the correlation functions associated with
the canonical ensemble. In fact, by expanding the product in (2.7) we obtain

LB(φ) =
N∑

n=0

1
n!

∫

Λn

φ(q1) . . . φ(qn)ρ(n)
Λ,N (q1, . . . , qn) dq1 . . . dqn, (2.8)

where for n ≤ N and the points q1, . . . , qn ∈ Λ we have defined the n-point
correlation function in the canonical ensemble ρ

(n)
Λ,N (q1, . . . , qn) as:

ρ
(n)
Λ,N (q1, . . . , qn):=

1
(N − n)!

∫

ΛN−n

dqn+1 . . . dqN
1

Zβ,Λ,N
e−βHΛ(q). (2.9)

Note that ρ
(0)
Λ,N = 1 and ρ

(1)
Λ,N = N

|Λ| . Thus, in the thermodynamic limit, we
obtain ρ(1) = ρ. The existence of the thermodynamic limit ρ(n) for n ≥ 2, that
is the limit when |Λ| ↑ ∞ with N = �ρ|Λ|�, is more subtle than for thermo-
dynamic quantities like pressure and free energy which are on a logarithmic
scale. Analogous results in the grand-canonical ensemble are well-established
[44,45]. Furthermore, for small values of the activity, the correlation functions
can be represented as power series in the activity. A by-product of our analysis
below is that we also establish the convergence of the thermodynamic limit in
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the high-temperature-low-density regime in the canonical ensemble. The only
related previous result we are aware of is [5].

The logarithm of the Bogoliubov function

log LB(φ) =:
∑

n≥1

1
n!

∫

Λn

φ(q1) . . . φ(qn)u(n)
Λ,N (q1, . . . , qn) dq1 . . . dqn,

(2.10)

is the generating function for u
(n)
Λ,N (q1, . . . , qn), the sequence of truncated cor-

relation functions or Ursell functions. Relation (2.10) can be understood as
the definition of u

(n)
Λ,N (q1, . . . , qn).

These are the analogues of the cumulants for the sequence of correlation
functions. The correlation functions and the Ursell functions can be related
directly via a combinatorial formula by comparing (2.8) and (2.10) and give
rise to the following relation, see e.g. [44], p.87 or [46], Eq. (2–8), which can
also be used as an inductive definition for the Ursell functions:

ρ
(n)
Λ,N (q1, . . . , qn) =

∑

{P1,...,Pk}∈Π(1,...,n)

k∏

i=1

u
(|Pi|)
Λ,N (q

Pi
), (2.11)

where Π(1, . . . , n) is the set of all partitions of {1, . . . , n}. For Pi = {j1, . . . ,
j|Pi|}, we use the shortcut notation: q

Pi
= (qj1 , . . . , qj|Pi|). For example, for

n = 2 we have:

u
(2)
Λ,N (q1, q2) = ρ

(2)
Λ,N (q1, q2) − ρ

(1)
Λ,N (q1)ρ

(1)
Λ,N (q2).

We will see that in the thermodynamic limit the functions of ρ, ρ(n) and u(n)

(the limits of ρ
(n)
Λ,N and u

(n)
Λ,N ) have as leading order ρn. Hence, it is common

to introduce the following order one functions:

g
(n)
Λ,N (q1, . . . , qn):=

ρ
(n)
Λ,N (q1, . . . , qn)

ρn
(2.12)

and

h
(n)
Λ,N (q1, . . . , qn):=

u
(n)
Λ,N (q1, . . . , qn)

ρn
. (2.13)

Due to the periodic boundary conditions, all correlation functions introduced
above will be invariant under translation. Furthermore, as bounds will be uni-
form in Λ and N , it follows that all relations described in this subsection will
still hold true in the thermodynamic limit.

Next, we concentrate on the case n = 2. We express all correlation func-
tions as functions of the difference of coordinates ρ

(2)
Λ,N (q1 − q2), u

(2)
Λ,N (q1 − q2),

g
(2)
Λ,N (q1 − q2). The latter is known as the radial distribution function (in case

that the potential V is also radially symmetric) and h
(2)
Λ,N (q1 − q2) as the

structure function. Then the following relation holds

h
(2)
Λ,N (q1 − q2) = g

(2)
Λ,N (q1 − q2) −

(
N

ρ|Λ|

)2

, (2.14)
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which in the thermodynamic limit simplifies to

h(2)(q1 − q2) = g(2)(q1 − q2) − 1. (2.15)

Another type of correlation function playing a central role in the theory
of liquids is the Ornstein–Zernike direct correlation function c(q1, q2). In the
thermodynamic limit, it is defined via the following relation, usually called in
the literature as Ornstein–Zernike equation:

h(2)(q1, q2) = c(q1, q2) +
∫

Rd

c(q1, q3)h(2)(q3, q2)ρ(1)(q3) dq3. (2.16)

The direct correlation function is the building block of the classical theory of
fluids, see e.g. [47] and the references therein. For the case of dilute classi-
cal systems with finite-range interactions, it has been investigated in [1] that
the direct correlation function expressed in terms of its graphical expansion
satisfies the Ornstein–Zernike equation by expressing it in the Fourier space
(whenever one can interchange the Fourier transform with the series in the
density). The purpose was to show polynomial correction to the exponential
decay of the correlation, see [12] for details. Similar results have been proved
for the finite range Ising model above the critical temperature [8], as well as
the random cluster model [9]. Furthermore, similar graphical expansions have
been proved to satisfy the Ornstein–Zernike equation also in the context of
point processes and the random connection model of percolation [24]. Here, in
Theorem 2.9, working directly in the canonical ensemble and expressing the
involved quantities as graphical expansions, we prove that the direct correla-
tion function is an absolutely convergent series in powers of the density and
satisfies (2.16) in the thermodynamic limit.

In contrast to the grand-canonical ensemble where the activity appears
as a parameter in the definition, in the canonical ensemble the density only
enters as a parameter in the thermodynamic limit. In finite volume, the right
approximation to the density is given by the following (or similar) expression
for n ≤ N :

PN,|Λ|(n):=
N(N − 1) · · · (N − n + 1)

|Λ|n , for n ≤ N, (2.17)

which tends to ρn in the thermodynamic limit. For n > N we put PN,|Λ|(n) =
0. For the convenience of the reader, the first result is stated without any
reference to the polymer expansion to be considered next. It expresses the
correlation functions in terms of these approximated powers of the density
and establishes that it convergences to a power series expansion in ρ in the
thermodynamic limit.

Theorem 2.1. There exists a constant c0:=c0(βB,C(β), ‖φ‖∞, ‖φ‖1) > 0, in-
dependent of N and Λ such that if ρC(β) < c0 (with N = �ρ|Λ|� and C(β) as
in (2.2)), for any test function φ we obtain:

∫

Λn

φ(q1) . . . φ(qn)u(n)
Λ,N (q1, . . . , qn)dq1 . . . dqn =

∑

k≥0

Fβ,Λ,N (n, k), (2.18)
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where

Fβ,Λ,N (n, k) =
n∑

m=1

PN,|Λ|(m + k)Bβ,Λ(n,m, k). (2.19)

The factor PN,|Λ|(m+k) is defined in (2.17), while Bβ,Λ(n,m, k) is an infinite
sum which will be given later in (3.14) after introducing the abstract poly-
mer model. Note that both Fβ,Λ,N and Bβ,Λ are φ-dependent. Furthermore,
there exist constants C, c > 0 such that, for every N and Λ, the coefficients
Fβ,Λ,N (n, k), n ≥ 1, satisfy

|Fβ,Λ,N (n, k)| ≤ Ce−ck. (2.20)

For Λ ↑ R
d with N = �ρ|Λ|� the coefficient Bβ,Λ(n,m, k) converges to a limit

B̄β(n, k) which is determined in (4.11) and the series
∫

Rdn

φ(q1) . . . φ(qn)u(n)(q1, . . . , qn)dq1 . . . dqn = ρn
∑

k≥0

ρkB̄β(n, k) (2.21)

is absolutely convergent.

Remark 2.2. To prove Theorem 2.1, we follow the strategy presented in [42].
As a result, the radius of convergence or the value of c0 can be determined in
the same way as in [42]. However, one can easily obtain slightly better values
by following the machinery developed in [13] and also the improvements on the
tree-graph inequality in [41] and applied in the case of the canonical ensemble
as in [30].

For convenience, we will work with h
(n)
Λ,N (which asymptotically coincides

with u
(n)
Λ,N up to a power of ρ). The next step is to identify in h

(n)
Λ,N the lead-

ing order terms that survive in the thermodynamic limit and show that it
converges to a function h(n) which is analytic in ρ. Furthermore, the limit
is uniform in q1, . . . , qn. Up to translation invariance, the limit holds also in
L1. In order to obtain an explicit description of the limiting h(n), we need an
explicit asymptotic expression for Bβ,Λ(n,m, k) in terms of a graphical repre-
sentation. The resulting expression for h(n) was already shown in [28,31,46],
and a proof for pointwise convergence was sketched in [23]. First, we intro-
duce some concepts from combinatorics and graph theory. We also denote by
fi,j :=e−βV (qi−qj) − 1 Mayer’s f-function. Partially following [25] we define:

Definition 2.3. A (simple) graph is a pair g:=(V (g), E(g)), where V (g) is the
set of vertices and E(g) is the set of edges, with E(g) ⊂ {U ⊂ V (g) : |U | = 2},
| · | denoting the cardinality of a set. A graph g = (V (g), E(g)) is said to be
connected, if for every pair A,B ⊂ V (g) such that A∪B = V (g) and A∩B = ∅,
there is an edge e ∈ E(g) such that e ∩ A �= ∅ and e ∩ B �= ∅. Singletons are
considered to be connected. We use CV to denote the set of connected graphs
on the set of vertices V ⊂ [N ], where we use the notation [N ]:={1, . . . , N}.

Definition 2.4. A cutpoint of a connected graph g is a vertex of g whose removal
(with the attached edges) yields a disconnected graph. A connected graph is



Vol. 19 (2018) Convergence of Density Expansions 1125

called 2-connected if it has no cutpoint. A block in a simple graph is a maximal
2-connected subgraph. The block graph of a graph g is a new graph whose
vertices are the blocks of g and whose edges correspond to a pair of blocks
having a common cutpoint.

Cutpoints are frequently also called articulation points. In this article, we
reserve the latter notion for the following slightly more general concept. We
use this terminology in order to stay close to Stell’s seminal presentation [46]
of these graphical constructions.

Definition 2.5. Let k ∈ N, n ∈ N0. We consider graphs with n + k vertices,
of which the first n vertices are singled out and for simplicity we call them
“white”. All other vertices are considered to be “black”. The set of all such
graphs is denoted by Gn,n+k. Single vertices are not considered as graphs.
Similarly, we denote by Cn,n+k the set of all connected graphs on n+k vertices
with n white vertices.

A vertex is called articulation vertex if upon its removal the component
of which it is part separates into two or more connected pieces in such a way
that at least one piece contains no white vertices.

We denote by BAF
n,n+k the subset of Gn,n+k free of articulation vertices.

The easiest example to distinguish cutpoint from articulation point is the
graph: 1 (white) - 2 (black) - 3 (white), which is an articulation free graph,
but it is not a 2-connected one, as the vertex 2 is a cutpoint (but not an
articulation point).

This concept of articulation vertices free graph is also crucial for the defi-
nition of the so-called direct correlation function, see below in (2.27) and (2.28).
Motivated by the distinction between an articulation point and a cutpoint, we
introduce the concept of a nodal point.

Definition 2.6. A vertex is a nodal vertex if there exists two white vertices in
its connected component, which are different from the first vertex, such that
all the paths between that pair of chosen white vertices passes through the
first vertex.

We denote by Bn,n+k the set of all connected graphs over n white and
k black vertices free of articulation and of nodal vertices. The latter coincides
with the collection of all two-connected graphs on n + k vertices with n white
vertices.

The nodal points are exactly the cutpoints of a graph that are not artic-
ulation points. For a graph g ∈ Gn,n+k we define the activity

ζ̃Λ(g, {1, . . . , n}):=
∫ n+k∏

i=1

dqi

|Λ|
∏

{i,j}∈E(g)

fi,j

∏

i∈{1,...,n}
φ(qi), (2.22)

as well as its version without the test function φ, but with dependence on a
fixed configuration q1, . . . , qn:

ζ̃•
Λ(g; q1, . . . , qn):=

∫

Λk

n+k∏

j=n+1

dqj

∏

{i,j}∈E(g)

fi,j , (2.23)
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where fi,j :=e−βV (qi−qj) − 1. If φ is compactly supported around some point
in Λ, then ζ̃Λ scales as |Λ|−n−k while ζ̃•

Λ is of order one. Note also that in this
paper, we tend to denote with a • all quantities that depend on the positions
q1, . . . , qn. Now we are ready to state the theorem about the existence of the
infinite volume limit of (2.13):

Theorem 2.7. There exists a constant c0 > 0 such that for all ρC(β) < c0 we
have:

h(n)(q1, . . . , qn) := lim
Λ↑R

d,N→∞,
N=�ρ|Λ|�

h
(n)
Λ,N (q1, . . . , qn)

=
∑

k≥0

ρk 1
n!k!

∑

g∈BAF
n,n+k

ζ̃•(g; q1, . . . , qn), (2.24)

where

ζ̃•(g; q1, . . . , qn):= lim
Λ↑Rd

ζ̃•
Λ(g; q1, . . . , qn) =

∫

Rdk

n+k∏

j=n+1

dqj

∏

{i,j}∈E(g)

fi,j .

(2.25)

Moreover, at infinite volume, we have the following bound:

sup
q1,...,qn∈Λn

∣
∣
∣h(n)(q1, . . . , qn)

∣
∣
∣ ≤ C. (2.26)

Remark 2.8. The constant c0 can be determined in a similar fashion as the one
in Theorem 2.1, but here it depends only on βB and C(β). Equation (2.24)
is the representation given in formula 5–5 in [46], where it is derived from a
formal resumming of the grand-canonical ensemble power series representation
in the activity. Here, the formula is derived directly in the canonical ensemble.
In Stell’s words, h(n)(q1, . . . , qn) is the sum of all distinct connected simple
graphs consisting of white 1-circles labelled by 1, 2, . . . , n, respectively, some or
no black ρ1-circles, and at least one f-bond, such that the graphs are free of
articulation circles, i.e. are 1-irreducible.

For the particular case of two fixed white vertices, recalling the definition
of a nodal point and of the set B2,n+2, we define the direct correlation function
in the canonical ensemble, i.e. for fixed volume Λ and number of particles
N + 2:

c
(2)
Λ,N+2(q1, q2):=

N∑

k=0

ρk

k!

∑

g∈B2,2+k

ζ̃•
Λ(g; q1, q2). (2.27)

Then we have the following theorem:

Theorem 2.9. There exists a constant c0 > 0 such that for all ρC(β) < c0, the
direct correlation function c

(2)
Λ,N+2 in (2.27) converges in the thermodynamic

limit, to

c(2)(q1, q2):=
∞∑

k=0

ρk

k!

∑

g∈B2,2+k

ζ̃•(g; q1, q2), (2.28)
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which is an analytic function in ρ, for ρC(β) < c0. Furthermore, the series
(2.28) converges in the following sense:

sup
q1∈Λ

∫

Λ

dq2
ρk

k!

∣
∣
∣
∣
∣
∣

∑

g∈B2,2+k

ζ̃•
Λ(g; q1, q2)

∣
∣
∣
∣
∣
∣
≤ Ce−ck, (2.29)

uniformly in Λ.
Furthermore, the direct correlation function c

(2)
Λ,N+2 in (2.27) fulfils the

Ornstein–Zernike equation (2.16) up to the order O(1/|Λ|) and the limit func-
tion fulfils the Ornstein–Zernike equation (2.16).

Remark 2.10. The constant c0 in the above theorem is independent of the test
function φ; hence, it is different from the constant c0 in Theorem 2.1. However,
it is determined in a similar way and can be estimated explicitly. Moreover, as
a direct consequence of (2.29), we have that

sup
q1∈Λ

∫

Λ

dq2 |c(2)
Λ,N (q1, q2)| < ∞ (2.30)

which, together with (2.26) (for n = 2), proves that the Ornstein–Zernike
equation (2.16) is well defined.

3. Cluster Expansion, Proof of Theorem 2.1

Using the relation between the logarithm of the Bogoliubov function and the
truncated correlation functions (Ursell functions), cf. (2.10), we can express
the truncated correlation functions as variational derivatives of the logarithm
of an extended partition function:
∫

φ(q1) . . . φ(qn)u(n)(q1, . . . , qn)dq1 . . . dqn =
∂n

∂αn
log Zβ,Λ,N (αφ)|α=0,

(3.1)

where

Zβ,Λ,N (αφ):=
1

N !

∫ N∏

i=1

(1 + αφ(qi))e−βHΛ(q)dq1 . . . dqN . (3.2)

This follows from the fact that

LB(αφ) =
Zβ,Λ,N (αφ)
Zβ,Λ,N (0)

, Zβ,Λ,N (0) ≡ Zβ,Λ,N .

We define the space V∗
N whose elements are all ordered pairs (V,A) where

V ⊂ {1, . . . , N} and A ⊂ V . We say that two elements (V1, A1) and (V2, A2)
are compatible, and denote it by (V1, A1) ∼ (V2, A2), if and only if V1 ∼ V2,
where two sets V1, V2 are called compatible (denoted by V1 ∼ V2) if V1∩V2 = ∅;
otherwise we call them incompatible (�).

Then we split (3.2) as

Zβ,Λ,N (αφ) =
|Λ|N
N !

Z int
β,Λ,N (αφ) (3.3)
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and write

Z int
β,Λ,N (αφ) =

∑

{(V1,A1),...,(Vk,Ak)}∼

k∏

i=1

ζΛ((Vi, Ai)), (3.4)

where

ζΛ ((V,A)):=α|A|
∑

g∈CV

ζ̃Λ(g,A),

ζ̃Λ(g,A):=
∫

dq
V

|Λ||V |

∏

{i,j}∈E(g)

fi,j

∏

i∈A

φ(qi), (3.5)

with the latter as already defined in (2.22), and dq
V

is a shorthand for the
product measure

∏
i∈V dqi. In the literature, see [2], this is called subset gas

and it is a special case of the general Abstract Polymer Model, which consists
of (i) a set of polymers V∗

N , (ii) a binary symmetric relation ∼ of compatibility
between the polymers (i.e. on V∗

N × V∗
N ) and (iii) a weight function ζΛ : V∗

N →
C. We also define the compatibility graph GV∗

N
to be the graph with vertex set

V∗
N and with an edge between two polymers (Vi, Ai) and (Vj , Aj) if and only if

they are an incompatible pair. In this framework, we have the following formal
relation for the logarithm, which will be justified rigorously in Theorem 3.1
below (see [21]):

log Z int
β,Λ,N (αφ) = log

⎛

⎝
∑

{(V1,A1),...,(Vk,Ak)}∼

k∏

i=1

ζΛ((Vi, Ai))

⎞

⎠ =
∑

I∈I(V∗
N )

cIζ
I
Λ,

(3.6)

where

cI =
1
I!

∑

G⊂GI

(−1)|E(G)|. (3.7)

The sum in (3.6) is over the set I(V∗
N ) of all multi-indices I : V∗

N → {0, 1, . . .}.
We use the shortcut

ζI
Λ:=

∏
(V,A) ζΛ((V,A))I((V,A)), but for notational simplicity in stating the

main theorem of cluster expansion, we use the notation γ:=(V,A) for the
generic polymer consisting of the ordered pair (V,A) ∈ V∗

N . Then, defining
supp I:={γ ∈ V∗

N : I(γ) > 0}, we denote by GI the graph with
∑

γ∈supp I I(γ)
vertices induced from the restricted GV∗

N
in supp I, by replacing each vertex γ

by the complete graph on I(γ) vertices. Furthermore, the sum in (3.7) is over
all connected subgraphs G of GI spanning the whole set of vertices of GI and
I!:=

∏
γ∈supp I I(γ)!. Note that if I is such that GI is not connected (i.e. I is

not a cluster) then cI = 0.
We state the general theorem for the special case of the subset gas, fol-

lowing [21] to which we refer for the proof.
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Theorem 3.1 (Cluster Expansion). Assume that there are two non-negative
numbers a, c ≥ 0 such that

∑

(V,A): V 1

|ζΛ((V,A))|ea|V |+c|V | ≤ a. (3.8)

Then, for every polymer (V ′, A′) ∈ V∗
N , we obtain that

∑

I: I((V ′,A′))≥1

|cIζ
I
Λ|e

∑
(V,A)∈supp I I((V,A))c|V | ≤ |ζΛ((V ′, A′))|ea|V ′|+c|V ′|,

(3.9)

where the coefficients cI are given in (3.7).

Proof of Theorem 2.1. From (3.1), (3.2) and by representing the partition func-
tion by the subset gas, we first check the validity of the convergence condition
(3.8) of Theorem 3.1. In order to bound the activity ζΛ ((V,A)), we use the
tree-graph inequality (see the original references [7,26,37]; here we use the
particular form given in [39], Proposition 6.1 (a)):

∣
∣
∣
∑

g∈Cn

∏

{j,k}∈E(g)

fj,k

∣
∣
∣ ≤ e2βBn

∑

T∈Tn

∏

{j,k}∈E(T )

|fj,k|, (3.10)

where Tn and Cn are, respectively, the set of trees and connected graphs with
n vertices. We obtain that
∑

(V,A): V �1

|ζΛ ((V, A)) |ec|V |

≤
∑

(V,A): V �1

α|A|‖φ‖|A|−1
∞ e(2βB+c)|V ||T|V ||

‖φ‖1

|Λ||V | C(β)|V |−1

≤ 1

|Λ|
‖φ‖1

‖φ‖∞
e(2βB+c)

∑

n≥2

(
N − 1

n − 1

)
nn−2

|Λ|n−1
e(2βB+c)(n−1)C(β)n−1

∑

A: |A|≤n

(α‖φ‖∞)|A|

≤ 1

|Λ|
‖φ‖1

‖φ‖∞
(1 + α‖φ‖∞)e(2βB+c)

∑

n≥2

(

(1 + α‖φ‖∞)e(2βB+c+1) N

|Λ|C(β)

)n−1

,

(3.11)

where we have also bounded the finite volume integrals
∫
Λ

|fj,k| dqk by C(β),
given in (2.2). Hence, given α, ‖φ‖∞ and ‖φ‖1 by bounding N

|Λ| ≤ ρ and
choosing ρC(β) small enough (depending on α, ‖φ‖∞ and ‖φ‖1), the right-
hand side is finite being a convergent geometric series; hence, (3.8) holds.
Then, applying Theorem 3.1, the logarithm of the partition function is an
absolutely convergent series (3.6) which we analyse next. Let

n:=
∑

(V,A)∈supp I

|A|I((V,A)) and m:=
∣
∣ ∪(V,A)∈supp I A

∣
∣. (3.12)

Note that m is the number of white vertices and n the number of white vertices
counted with their multiplicity, that is the number of times a particular vertex
appears in different polymers. Moreover, let k be the number of the remaining
vertices, i.e. all vertices which are in the V ’s, but not in any of the A’s, that



1130 T. Kuna, D. Tsagkarogiannis Ann. Henri Poincaré

is, ∪(V,A)∈supp IV = [m + k]. As |V | ≥ 2, then, if A = ∅ for all A, we should
have that 2 ≤ k ≤ N . Otherwise, if m = 1 then k ≥ 1, while for our case of
n ≥ 2, we have that k ≥ 0 as below. Recall that [m] = {1, . . . , m}. Since cIζ

I
Λ

does not depend on the actual labels in sets ∪(V,A)∈supp IA and ∪(V,A)∈supp IV
but only on their cardinality, we have:

log Z int
β,Λ,N (αφ)

= log Z int
β,Λ,N (0) +

N∑

n=1

n∑

m=1

N−m∑

k=0

(
N

m + k

)(
m + k

m

)

αn
∑

I: ∪(V,A)∈supp IA=[m]
∪(V,A)∈supp IV =[m+k]∑

(V,A)∈supp I |A|I((V,A))=n

cIζ
I
Λ

= log Z int
β,Λ,N (0) +

∑

n≥1

n∑

m=1

N−m∑

k=0

αnPN,|Λ|(m + k)Bβ,Λ(n,m, k), (3.13)

where PN,|Λ| is given in (2.17),

Bβ,Λ(n,m, k):=
|Λ|(m+k)

m!k!

∑

I: ∪(V,A)∈supp IA=[m]
∪(V,A)∈supp IV =[m+k]∑

(V,A)∈supp I |A|I((V,A))=n

cIζ
I
Λ (3.14)

and ζΛ is given in (3.5).
Hence, from (3.1), taking the n-th order derivative in (3.13) and eval-

uating at α = 0, we obtain another absolutely convergent series from which
formula (2.18) is proved with Fβ,Λ,N as in (2.19). Furthermore, from (3.13),
(3.11) and (3.9) the bound (2.20) follows:

|Fβ,Λ,N (n, k)| ≤ e−ck
n∑

m=1

(
N

m + k

)(
m + k

m

) ∑

I: ∪(V,A)∈supp IA=[m]
∪(V,A)∈supp IV =[m+k]∑

(V,A)∈supp I |A|I((V,A))=n

|cIζ
I
Λ|eck

≤ e−ck
n∑

m=1

N

m

∑

I: |∪(V,A)∈supp IA|=m

∪(V,A)∈supp IA1

|∪(V,A)∈supp IV |=m+k
∑

(V,A)∈supp I |A|I((V,A))=n

|cIζ
I
Λ|eck

≤ e−ckN
∑

(V ′,A′): A′1

∑

I:
I((V ′,A′))≥1

|cIζ
I
Λ|ec

∑
(V,A) I((V,A))|V |

≤ e−ckN
∑

(V ′,A′): V ′1

|ζΛ((V ′, A′))|e(a+c)|V ′| ≤ N

|Λ|Ce−ck,

(3.15)

for some constant C > 0, uniformly in N , n, k and Λ. In order to get the second
line from the first, we used that k ≤

∑
(V,A) I((V,A))|V | and we replace the
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first sum by the series
∑∞

m=1 and drop the n dependent condition in the second
sum.

Concluding, the proof of (2.21) is a consequence of the above uniform
bounds complemented with the investigation of the infinite volume limit of
all terms. It will be given in the next section and in particular in formula
(4.11). �

4. Leading Order Terms, Proof of Theorem 2.7

Given (3.14) we first identify the terms that will survive in the thermodynamic
limit. We claim that in the thermodynamic limit a summand in (3.14) is non-
zero only if for all the polymers (V,A) in supp I, only exactly one has A �= ∅.
Indeed, polymers (V,A) with A �= ∅ have activities ζΛ((V,A)), which are of
order O(1/|Λ||V |), whereas polymers of the type (V, ∅) have associated activ-
ities ζΛ((V, ∅)) of order O( 1

|Λ||V |−1 ). As each polymer has at least one vertex
in common with some other polymer, this implies the claim by power count-
ing. More precisely, let us consider the following case: suppose the contrary
is true and let (V1, A1) and (V2, A2) be two polymers with both A1 �= ∅ and
A2 �= ∅. Moreover, the two polymers are connected with each other either di-
rectly (sharing a label) or via other polymers of the type (V, ∅). If V1 ∩V2 �= ∅

then BΛ (given in (3.14)) is of order O( 1
|Λ| ). The same is true if they are con-

nected via other polymers of the type (V, ∅). In order to show it, let us assume
(without loss of generality) that there is only one such connecting polymer. As
for the latter the activity is ζΛ((V, ∅)) = O( 1

|Λ||V |−1 ), we obtain that, again,
the corresponding term in Bβ,Λ is of the order of:

|Λ||V1|+|V2|+|V |−2 1
|Λ||V1|

1
|Λ||V2|

1
|Λ||V |−1

=
1

|Λ| .

Hence, the structure of the leading term at the level of the multi-indices is
quite simple: only one polymer, call it (V0, A0) has A0 �= ∅. Then, for all other
polymers, A = ∅, we can have a connection structure as explained below (and
as in [42]). Since it is always true that the total number of labels (m + k)
should satisfy m+k ≤

∑
V ∈supp I(|V |−1)+1 (due to the fact that each (V,A)

should be incompatible with at least one of the other polymers, i.e. have at
least one common label and V0 ∪

⋃
(V,A)∈supp I, V �=V0

V = [m + k]), overall we
have:

I((V,A)) = 1, ∀(V,A) ∈ supp I, and (4.1)

m + k = |V0| +
∑

(V,A)∈supp I, V �=V0

(|V | − 1). (4.2)

Hence, we restrict the summation over multi-indices in this subclass satisfying
properties (4.1), (4.2) and containing only one polymer (V0, A0) with A0 �= ∅.
We denote this fact by adding a superscript ∗ at the sum as e.g. in (4.4) below.
The polymers of the form (V, ∅) can be attached to the polymer with A �= ∅

either on a vertex not in A (a black circle in the terminology of Stell) or in a
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vertex in A (a white circle in the terminology of Stell). In order to visualize
the last case, we give the following example: consider the following multi-index
I: I is equal to one on the two polymers ({1, 2}, {1, 2}) and ({1, 3}, ∅), zero
otherwise. The two polymers intersect in the label 1. We have:

|Λ|3ζI
Λ = |Λ|3α2

∫

φ(q1)φ(q2)f1,2(q1 − q2)
dq1

|Λ|
dq2

|Λ| ·
∫

f1,3(q1 − q3)
dq1

|Λ|
dq3

|Λ|

= α2

∫

φ(q1)φ(q2)f1,2(q1 − q2)dq1dq2 · 1
|Λ|

∫

f1,3(q1 − q3)dq1dq3.

= α2

∫

φ(q1)φ(q2)f1,2(q1 − q2)dq1dq2 ·
∫

f1,3(q3)dq3.

As we will explain later, this term will be cancelled by one summand from the
term |Λ|3ζI′

Λ , with I ′ being the multi-index which is one only on the polymer
({1, 2, 3}, {1, 2}) and in particular with the summand in |Λ|3ζI′

Λ which is as-
sociated with the graph on {1, 2, 3} with exactly two edges {3, 1} and {1, 2}.
Let us start with the formal proof for these cancellations.

Proof of Theorem 2.7. Following the discussion above, we split Bβ,Λ from
(3.14) as follows:

Bβ,Λ(n,m, k) = B̄β,Λ(n, k)δn,m + Rβ,Λ(n,m, k), (4.3)

where

B̄β,Λ(n, k):=
|Λ|(n+k)

n!k!

∗∑

I: A(I)=[n+k]

cIζ
I
Λ (4.4)

and

A(I):= ∪V ∈supp I V. (4.5)

Recall that the superscript ∗ indicates that the sum is over all multi-indices
that satisfy properties (4.1), (4.2) and that contain only one polymer with A �=
∅, for which we have already chosen its labels and we call it A0:={1, . . . , n}.
For this reason, we can now consider multi-indices in I(Vn,k), where the class
Vn,k consists of all subsets of the labels corresponding to the white vertices
{1, . . . , n} and the black vertices {n + 1, . . . , n + k}. The new polymers either
they contain A0 or they intersect it at most one point. Therefore, in the new
set-up with I ∈ I(Vn,k), the conditions (4.1) and (4.2) can be rewritten as

I(V ) = 1, ∀V ∈ supp I, and (4.6)

n + k = |V0| +
∑

V ∈supp I, V �=V0

(|V | − 1), (4.7)

where V0 ⊃ A0 and we still refer to them by a ∗ over the sum. Moreover, the
term Rβ,Λ(n,m, k) in (4.3) consists of lower order terms 1/|Λ|. Following [43],
Lemma 6.1 and 6.2 (to which we refer for the details), we can prove that also
their sum is of order 1/|Λ| , namely that

|Rβ,Λ(n,m, k)| ≤ C

|Λ| , (4.8)
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for all n, k and uniformly on φ (the dependence on φ is through (2.22)).
The next step is to investigate cancellations that take place in finite

volume. These originate from the fact that in the sum in (4.4), the activity
function corresponding to a given structure (graph) might appear in several
multi-indices multiplied with different combinatorial coefficients and as a result
they may cancel with each other exactly. To implement this step, we fix a graph
and we sum over all multi-indices that can produce it (also compatible with
the previous restriction, in particular that all white vertices have to be in one
polymer) and apply Corollary 1 in [42]. However, this corollary can only be
applied directly for the case of only “black” vertices. For example, the graph
1 (white) - 2 (black) - 3 (white) is not cancelled. The vertex 2, even though
it is a cutpoint, it is not an articulation point as it is linked to only “white”
vertices. Indeed, in this case, we do not have cancellations as the vertices 1
and 3 are white and hence the only cluster of polymers in the sum (4.4) which
contains this graph is ({1, 2, 3}, {1, 2})) since all whites have to be in only one
polymer. This is one example of a graph that survives the cancellation.

In the next lemma, we give a substantial account of these cancellations
and show that (4.4) can be expressed as in [46].

Lemma 4.1. For all n ≥ 2, k ≥ 1 and Λ large enough (as it is required in
Lemma 4.3), (4.4) is equal to

B̄β,Λ(n, k) =
|Λ|n+k

n!k!

∑

g∈BAF
n,n+k

ζ̃Λ(g, {1, . . . , n}).

The proof of Lemma 4.1 will be given after concluding the proof of the the-
orem. The next challenge is to extract bounds on the quantity
h

(n)
Λ,N (q1, . . . , qn). To this end, we need to interchange the integrals over

q1, . . . , qn with the sum over k in the thermodynamic limit; hence, we need
to prove convergence of the cluster expansion with activities being functions
of q1, . . . , qn in an appropriate norm. From (2.19) using the splitting (4.3), we
have:

Fβ,Λ,N (n, k) = PN,|Λ|(n + k)B̄β,Λ(n, k) +
n−1∑

m=1

PN,|Λ|(m + k)Rβ,Λ(n,m, k),

(4.9)

where the second term is vanishing in the limit Λ ↑ R
d. Substituting in (2.18)

we obtain:
∫

Λn

n∏

i=1

(dqi φ(qi)) ρnh
(n)
Λ,N (q1, . . . , qn)

=
∑

k≥0

PN,|Λ|(n + k)
1

n!k!

∑

g∈BAF
n,n+k

∫

Λn+k

n+k∏

j=1

dqj

∏

{i,j}∈E(g)

fi,j

n∏

i=1

φ(qi)

+
∑

k≥0

n−1∑

m=1

PN,|Λ|(m + k)Rβ,Λ(n,m, k). (4.10)
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Then, having the bounds (2.20) and (4.8), we can take the thermodynamic
limit on the right-hand side of (4.10) and obtain:

∫

Rdn

n∏

i=1

(dqi φ(qi)) ρnh(n)(q1, . . . , qn) =
∑

k≥0

ρnρkB̄β(n, k),

B̄β(n, k):=
∫

Rdn

n∏

i=1

(dqi φ(qi))
1

n!k!

∑

g∈BAF
n,n+k

∫

Rdk

k∏

i=1

dqn+i

∏

{i,j}∈E(g)

fi,j ,

(4.11)

which implies (2.21) in Theorem 2.1 and gives an explicit formula for B̄β(n, k).
In order to obtain (2.24), we need to go one step further and show that we can
exchange the sum over k and the integral over dq1 . . . dqn. This is the content
of the next lemma where we choose to work in the finite volume case, since we
will need it in the sequel.

Lemma 4.2. For any n ≥ 2 and k ≥ 1 we have that

PN,|Λ|(n + k)
1

n!k!

∫

Λk

k∏

j=1

dqn+j

∣
∣
∣
∣
∣
∣

∑

g∈BAF
n,n+k

∏

{i,j}∈E(g)

fi,j

∣
∣
∣
∣
∣
∣
≤ Cρne−ck,(4.12)

for some positive constants c, C independent of k, N and Λ, with N = �ρ|Λ|�.

The proof of Lemma 4.2 will be given at the end of this section. Since
the bound (4.12) is uniform in the volume Λ, we can pass to the limit Λ ↑ ∞
and prove (2.26), concluding the proof of Theorem 2.7. �

We conclude this section with the proofs of the two lemmas.

Proof of Lemma 4.1. We rearrange the finite sum in (4.4) by first fixing a
graph g ∈ Cn,n+k and then summing over all multi-indices in the new space
I(Vn,k) that can produce such graph. Hence, given g ∈ Cn,n+k, we identify the
articulation points and define the set of graphs B(g):={b0, b1, . . . , br} where
the bi’s are the components free of articulation vertices. Notice that one of
them, b0 (without loss of generality), contains all white vertices with labels
in A0. We denote by F�(g) the collection of all F ⊂ B(g) such that ∪b∈F b is
a connected graph, where we use the notation ∪b∈F b:=(∪b∈F V (b),∪b∈F E(b))
for the union of graphs. We also define H(g) to be the collection of all such
graphs:

H(g):={g′ : g′ =
⋃

b∈F

b, F ∈ F�(g)}. (4.13)

Similarly,

A(g):={V (g′), g′ ∈ H(g)} (4.14)

is the collection of the corresponding subsets of the set of labels. We
use the shortcut I ∼ g for the class I : supp I ⊂ A(g) with A(I) = V (g),
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|V ∩ V ′| = 1,∀V, V ′ ∈ supp I and each edge of g is contained in some polymer
V with I(V ) > 0. We have:

B̄β,Λ(n, k) =
|Λ|n+k

n!k!

∑

g∈Cn,n+k

ζ̃Λ(g, {1, . . . , n})
∗∑

I∼g

cI , (4.15)

where we recall that the sum ∗ is over all multi-indices that satisfy (4.6), (4.7)
and that contain only one polymer with V ⊃ A0, A0 = {1, . . . , n}. Note that
this sum is finite. Then, in order to obtain (4.4), we show that the sum of
multi-indices

∑∗
I∼g cI is one if g ∈ BAF

n,n+k and zero otherwise, as it will be
proved in (4.17).

To do that, we follow the corresponding proof in [42]. We give here the
necessary modifications. The key property for the cancellations is the fact
that for any g′ ∈ H(g), with g′ =

⋃
b∈F b for some F ∈ F�(g), the following

factorization holds

ζ̃Λ(g′) =
∏

b∈F

ζ̃Λ(b), (4.16)

for all finite Λ. Note that for simplicity we have used the notation ζ̃Λ(g):=
ζ̃Λ(g,A0), if V (g) ⊃ A0 and ζ̃Λ(g):=ζ̃Λ(g, ∅) otherwise. The relation (4.16)
is due to the fact that the intersection points of the articulation vertex free
components b in g′ are articulation points (for g′) and that for the integration
in ζ̃Λ we assume periodic boundary conditions. Moreover, all white vertices are
contained in b0. Notice that if we had white vertices in different components,
then (4.16) would not be true. Then, the main result in [42], Lemma 2 still
holds true:

Lemma 4.3. For any V ∗ ∈ Vn,k and any g ∈ CV ∗ , let B(g) = {b0, b1, . . . , bk}
be the set of its articulation vertex free components. Thus there exists �0 > 0
such that for all � > �0 the coefficient multiplying the monomials ζ̃Λ(b0)n0 ,

ζ̃Λ(b1)n1 , . . . ζ̃Λ(bk)nk (where Λ ≡ Λ(�)), for any ni ∈ {1, 2, . . .}, i = 0, 1, . . . , k,
in the series

∑
I: A(I)⊂V ∗ cIζ

I
Λ with ζΛ(V ) =

∑
g′∈CV

ζ̃Λ(g′), is equal to zero
except when k = 0, i.e. when g is itself an articulation vertex free graph.

The only modification in the proof with respect to [42] is when we check
the convergence of the new cluster expansion, in equation (47). The presence
of the white vertices makes it even easier since we win a power of |Λ| because
of non translation invariance; therefore, we refrain from repeating the proof
here and we refer the reader to [42].

Thus, since we know that in (4.15) the component b0 has to appear in
each summand and since by Lemma 4.3 there should be only one component,
then the only non-zero contribution comes from the articulation vertex free
component, i.e. g ∈ BAF

n,n+k. In other words, we have that for every g ∈ Cn,n+k∩
(BAF

n,n+k)c,
∑

I: supp I⊂A(g), A(I)=V ∗

|V ∩V ′|=1,∀V,V ′∈supp I

cI = 0 (4.17)
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and = 1, otherwise. Notice the difference with respect to [42]: here, the element
b0 ∈ B(g) as it appears in A(g) (via H(g), defined above) is special and consists
of articulation free graphs in their new definition within the presence of “white”
vertices. This concludes the proof of Lemma 4.1. �
Proof of Lemma 4.2. Recall the use of the shortcut I ∼ g for the multi-indices
in I(Vn,k), as in (4.15). Then, using (4.17), we can write the left-hand side of
(4.12) as follows:

N(N − 1) . . . (N − (n + k) + 1)

|Λ|n+k

1

n!k!

∫

Λk

k∏

j=1

dqn+j

∣
∣
∣
∣
∣
∣

∑

g∈Cn,n+k

∏

{i,j}∈E(g)

fi,j

∗∑

I∼g

cI

∣
∣
∣
∣
∣
∣

=

(
N

n + k

)(
n + k

n

)∫

Λk

k∏

j=1

dqn+j
1

|Λ|n+k

∣
∣
∣
∣
∣
∣
∣
∣

∗∑

I∈I(Vn,k)

A(I)=[n+k]

cI

∑

g∈Cn,n+k:
g∼I

∏

{i,j}∈E(g)

fi,j

∣
∣
∣
∣
∣
∣
∣
∣

≤
∗∑

I∈I(Vn,k)

A(I)=[n+k]

|cI |
(

N

n + k

)(
n + k

n

)∫

Λk

k∏

j=1

dqn+j
1

|Λ|n+k

∣
∣
∣
∣
∣
∣
∣
∣

∑

g∈Cn,n+k:
g∼I

∏

{i,j}∈E(g)

fi,j

∣
∣
∣
∣
∣
∣
∣
∣

,

(4.18)

where the class g ∼ I consists of all graphs that can be constructed as follows:
for each V ∈ supp I, choose a graph gV ∈ CV and g is obtained by gluing the
graphs gV and gV ′ at the unique intersection point V ∩ V ′. Let V0, V1, . . . , Vr

be the polymers in the support of a given I, i.e. with I(Vi) > 0, i = 0, . . . , r.
Without loss of generality, we suppose that V0 is the (only) polymer that con-
tains A0:={1, . . . , n}, the set of the labels corresponding to the white vertices.
We can write:

∣
∣
∣
∣
∣
∣
∣
∣

∑

g∈Cn,n+k:
g∼I

∏

{i,j}∈E(g)

fi,j

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∑

g0∈CV0

∏

{i,j}∈E(gj)

fi,j

∣
∣
∣
∣
∣
∣

r∏

j=1

∣
∣
∣
∣
∣
∣

∑

gj∈CVj

∏

{i,j}∈E(gj)

fi,j

∣
∣
∣
∣
∣
∣
,

as each of the polymers V1, . . . , Vr intersects with V0 at most at one label.
Alluding to the constraints (4.6) and (4.7), we split the integral as follows:

∫

Λk

k∏

j=1

dqn+j
1

|Λ|n+k

∣
∣
∣
∣
∣
∣
∣
∣

∑

g∈Cn,n+k:
g∼I

∏

{i,j}∈E(g)

fi,j

∣
∣
∣
∣
∣
∣
∣
∣

≤ 1
|Λ|n

r∏

j=0

ζ̂•
Λ(V ), (4.19)

where we have introduced the notation:

ζ̂•
Λ(V ):=

⎧
⎪⎪⎨

⎪⎪⎩

∫
Λ|V \A0|

dq
V \A0

|Λ||V \A0|

∣
∣
∣
∑

g∈CV

∏
{i,j}∈E(g) fi,j

∣
∣
∣ , if V ⊃ A0,

∫
Λ|V |

∏
j∈V

dqj
|Λ|

∣
∣
∣
∑

g∈CV

∏
{i,j}∈E(g) fi,j

∣
∣
∣ , if |V ∩ A0| ∈ {0, 1},

0, otherwise.
(4.20)
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Note that these activities differ from the ones in (3.5) by not having the test
functions φ inside of the integral, but instead some fixed configurations q

A0

(which we indicate by the •). Note the position of the absolute value. Thus, we
can bound (4.20) using (4.19) and the definition of the binomial coefficient:

PN,|Λ|(n)
n!

∗∑

I∈I(Vn,k)
A(I)=[n+k]

|cI |
(

N − n

k

) r∏

j=0

|ζ̂•
Λ(V )|

≤
PN,|Λ|(n)

n!

∑

A⊂[N−n]
|A|=k

∗∑

I:
A(I)=A∪A0

|cI ||ζ̂•
Λ|I . (4.21)

Then, it is easy to show that the abstract polymer model in Vn,N−n (with n
white labels and N −n black) with compatibility condition V ∼ V ′ if and only
if V ∩ V ′ = ∅ and activities ζ̂•

Λ, satisfies the hypothesis (3.8) of Theorem 3.1.
To show it, for the case V0 ⊃ A0 we have:

sup
q
A0

∈Λ|A0|
|ζ̂•

Λ(V0)| ≤ e2βB|V0|
∑

τ∈TV0

sup
q
A0

∈Λ|A0|

∫

dq
V0\A0

∏

{i,j}∈E(τ)

|fi,j | .

(4.22)

Considering one of the labels in A0 as the root, we take the supremum of
fi,j for any edge which has another label from A0 as a vertex further away
from the root. This will give a contribution of ‖fi,j‖∞ for each such edge. The
remaining vertices give a contribution C(β). Overall, we bound (4.22) by

≤ e2βB|V0||T|V0|| (‖fi,j‖∞ ∨ C(β))|A0|−1
C(β)|V0|−|A0|, (4.23)

where s ∨ t denotes the maximum of the two numbers s, t. Similarly, for the
case |V ∩ A0| ∈ {0, 1}, we have:

|ζ̂•
Λ(V )| ≤ |T|V ||(e2βBC(β))|V |. (4.24)

With these bounds, it is easy to show that (3.8) holds. Then, Theorem 3.1
can be applied obtaining an absolutely convergent series

∑
I∈I(Vn,k) cI(ζ̂•

Λ)I ,
equal to the logarithm of some abstract polymer model partition function, but
which does not necessarily correspond to some correlation function due to the
absolute value in (4.20). Thus, from (4.21), using (3.9), we obtain that

∗∑

I∈I(Vn,N−n)
|A(I)\A0|=k

|cI ||ζ̂•
Λ|I ≤ e−ck

∗∑

I∈I(Vn,N−n)
|A(I)\A0|=k

|cI ||ζ̂•
Λ|Ieck ≤ Ce−ck, (4.25)

for some C > 0 as in (3.15), depending on n. �
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5. Direct Correlation Function, Proof of Theorem 2.9

Using (2.18), Theorem 2.7 and definition (2.23), the leading order of the second
Ursell function can be expressed as follows:
∫

Λ2
dq1dq2 φ(q1)φ(q2)u

(2)
Λ,N (q1, q2)

=

∫

Λ2
dq1dq2 φ(q1)φ(q2)

∑

k≥0

PN,|Λ|(2 + k)
1

2!k!

∑

g∈BAF
2,2+k

ζ̃•
Λ(g; q1, q2) + O

(
1

|Λ|

)

.

(5.1)

In order to derive the Ornstein–Zernike equation in the canonical ensemble,
we split the graphs in the right-hand side of (5.1) at the nodal points (recall
Definition 2.6). These are the points through which pass all paths joining q1 to
q2, hence we can order them. Given g ∈ BAF

2,2+k, we choose the first nodal point
starting from q1 and call its label j. Note that by the definition of articulation
points, j �= 1, 2. Upon the removal of this point the graph g splits into two
connected components: g1 with l+2 vertices and g2 with k− l+1 vertices with
the only common vertex being the one with label j. Note that g1 contains q1

and g2 contains q2. Since qj is the location of a nodal point, we can write

ζ̃•
Λ(g; q1, q2) =

∫

Λ

dqj ζ̃•
Λ(g1; q1, qj) ζ̃•

Λ(g2; qj , q2).

Then, the leading term in (5.1) yields

∫

Λ2
dq1dq2 φ(q1)φ(q2)

N−2∑

k=0

PN,|Λ|(2 + k)
1

2!k!

⎡

⎣
∑

g∈B2,k+2

ζ̃•
Λ(g; q1, q2)

+

k+2∑

j=3

k−1∑

l=0

(
k − 1

l

)∫

Λ

dqj

|Λ|
∑

g1∈B2,l+2

ζ̃•
Λ(g1; q1, qj)

∑

g2∈BAF
2,k−l+1

ζ̃•
Λ(g2; qj , q2)

⎤

⎥
⎦ .

(5.2)

We rewrite this in such a way that direct two-point correlation function (uniquely
defined up to leading order) as given in (2.27) appear. By choosing the label
j = 3 in (5.2) we obtain

∫

Λ2
dq1dq2

1
2
φ(q1)φ(q2)

⎡

⎣
N−2∑

k=0

PN,|Λ|(2 + k)
1
k!

∑

g∈B2,k+2

ζ̃•
Λ(g; q1, q2)

+
N−2∑

k=0

PN,|Λ|(2 + k)
k−1∑

l=0

∫

Λ

dq3
1
l!

∑

g1∈B2,l+2

ζ̃•
Λ(g1; q1, q3)

1
(k − 1 − l)!

×
∑

g2∈BAF
2,k−l+1

ζ̃•
Λ(g2; q3, q2)

⎤

⎦ .
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By using new labels l1:=l and l2:=k−1− l, the last summand can be rewritten
as follows

N−3∑

l1=0

∫

Λ

dq3
1
l1!

∑

g1∈B2,l1+2

ζ̃•
Λ(g1; q1, q3)

N−3−l1∑

l2=0

PN,|Λ|(l1 + l2 + 3)
1
l2!

×
∑

g2∈BAF
2,l2+2

ζ̃•
Λ(g2; q3, q2). (5.3)

Let us introduce the following shorthands

C̄•
Λ(2, l1 + 2; q1, q3):=

1
l1!

∑

g1∈B2,l1+2

ζ̃•
Λ(g1; q1, q3) (5.4)

and

B̄•
Λ(2, l2 + 2; q3, q2):=

1
l2!

∑

g2∈BAF
2,l2+2

ζ̃•
Λ(g2; q3, q2). (5.5)

Then we can rewrite (5.3) as

∫

Λ

dq3

N−3∑

l1=0

PN,|Λ|(l1 + 1)C̄•
Λ(2, l1 + 2; q1, q3)

×
N−3−l1∑

l2=0

PN,|Λ|(l1 + l2 + 3)
PN,|Λ|(l1 + 1)PN,|Λ|(l2 + 2)

PN,|Λ|(l2 + 2)B̄•
Λ(2, l2 + 2; q3, q2), (5.6)

which is a finite volume version of the convolution term in OZ equation.

Proof of Theorem 2.9. The proof will be divided into two lemmas: the first
(Lemma 5.1) proves the validity of the Ornstein–Zernike equation at finite
volume (up to leading order) and the second (Lemma 5.2) the infinite volume
convergence. Combining the two results, we conclude the proof of Theorem 2.9.

�

Next we present the two lemmas. As a consequence of (5.6), we have:

Lemma 5.1. Under the hypothesis of the previous theorems, the function c
(2)
Λ,N

defined in (2.27) fulfils the Ornstein–Zernike equation to leading order in the
following sense:
∫

Λ2
φ(q1)φ(q2)u

(2)
Λ,N (q1, q2) dq1dq2 = ρ2

∫

Λ2
φ(q1)φ(q2)c

(2)
Λ,N (q1, q2) dq1dq2

+
∫

Λ2
φ(q1)φ(q2)

(∫

Λ

ρ c
(2)
Λ,N (q1, q3)u

(2)
Λ,N (q3, q2)dq3

)

dq1dq2

+ O

(
1

|Λ|

)

. (5.7)
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Proof. Using the estimates (3.27) and (3.28) in [42], namely that for some
constant c′ it holds that for all l and N

∣
∣
∣
∣
PN,|Λ|(l)

ρl
− 1
∣
∣
∣
∣ ≤

c′

|Λ| , (5.8)

we can replace in (5.6) all terms of the form PN,|Λ|(l) by powers of ρ up to an

error of order O(1/|Λ|). Applying that to the fraction PN,|Λ|(l1+l2+3)

PN,|Λ|(l1+1)PN,|Λ|(l2+2)

we replace (5.6) by:
∫

Λ

dq3

N−3∑

l1=0

PN,|Λ|(l1 + 1)C̄•
Λ(2, l1 + 2; q1, q3)

×
N−3−l1∑

l2=0

PN,|Λ|(l2 + 2)B̄•
Λ(2, l2 + 2; q3, q2). (5.9)

To obtain the Ornstein–Zernike equation plus terms of lower order in |Λ|, we
rewrite (5.9) as:
∫

Λ

dq3

N−3∑

l1=0

PN,|Λ|(l1 + 1)C̄•
Λ(2, l1 + 2; q1, q3)

N−3∑

l2=0

PN,|Λ|(l2 + 2)B̄•
Λ(2, l2 + 2; q3, q2)

−
∫

Λ

dq3

N−3∑

l1=0

PN,|Λ|(l1 + 1)C̄•
Λ(2, l1 + 2; q1, q3)

×
N−3∑

l2=N−3−l1

PN,|Λ|(l2 + 2)B̄•
Λ(2, l2 + 2; q3, q2).

We show that the second term is of order O(1/|Λ|):
∣
∣
∣
∣
∣

∫

Λ

dq3

N−3∑

l1=0

PN,|Λ|(l1 + 1)C̄•
Λ(2, l1 + 2; q1, q3)

×
N−3∑

l2=N−3−l1

PN,|Λ|(l2 + 2)B̄•
Λ(2, l2 + 2; q3, q2)

∣
∣
∣
∣
∣

≤ sup
q′
3

∞∑

l2=�N/2�−2

PN,|Λ|(l2 + 2)
∣
∣B̄•

Λ(2, l2 + 2; q′
3, q2)

∣
∣

∫

Λ

dq3

�N/2�∑

l1=0

PN,|Λ|(l1 + 1)
∣
∣C̄•

Λ(2, l1 + 2; q1, q3)
∣
∣

+ sup
q′
3

∞∑

l2=0

PN,|Λ|(l2 + 2)
∣
∣B̄•

Λ(2, l2 + 2; q′
3, q2)

∣
∣

∫

Λ

dq3

∞∑

l1=�N/2�
PN,|Λ|(l1 + 1)

∣
∣C̄•

Λ(2, l1 + 2; q1, q3)
∣
∣ .
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In order to show that the above bound is of order O(1/|Λ|), one notes that
both summands contain the following two factors which are tails of the corre-
sponding convergent series:

sup
q2,q3

∞∑

l=N+1

PN,|Λ|(l + 2)
∣
∣B̄•

Λ(2, l + 2; q3, q2)
∣
∣ ≤ Ce−cN (5.10)

and

sup
q1

∞∑

l=N+1

PN,|Λ|(l + 1)
∫

Λ

dq3

∣
∣C̄•

Λ(2, l + 2; q1, q3)
∣
∣ ≤ Ce−cN , (5.11)

for some constants C, c > 0. The first follows from the bound in (4.12), while
the second is claimed in (2.29) and proved in the next lemma. �

The second result is about the convergence and integrability of
c
(2)
N (q1, q2) as N → ∞. In order to take the limit in (5.7) and get the infi-

nite volume version of the OZ equation, we need to prove (2.29) which is given
in the following lemma:

Lemma 5.2. For some positive constants C and c independent of N and Λ and
for every l1 ∈ N and q1 ∈ Λ we have that

PN,|Λ|(l1 + 1)
∫

Λ

dq2

∣
∣C̄•

Λ(2, l1 + 2; q1, q2)
∣
∣ ≤ Cρe−cl1 , (5.12)

for Λ large enough.

Remark 5.3. As it will be clear in the proof, for the above estimate to hold
it is important that we have an integral in q2, that is an integral over the
variable corresponding to the second white vertex. For short we call it the
integrated white vertex.

Proof. The proof follows the line of calculation in Lemma 4.2. The main dif-
ference is that here we do not require that there exists a special polymer V0

containing both white vertices. Hence, we restrict to the class

I(V ) = 1, ∀V ∈ supp I, and (5.13)

m + k =
∑

V ∈supp I

(|V | − 1) + 1 (5.14)

and we denote it by using the superscript ∗∗ over the sum, in order to distin-
guish it from the previous case. Recalling the shortcut I ∼ g for the class of
multi-indices in I(V2,l1) as in (4.15), we have:
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PN,|Λ|(l1 + 1)
∫

Λ

dq2

∣
∣C̄•

Λ(2, l1 + 2; q1, q2)
∣
∣

=
N(N − 1) . . . (N − (l1 + 1) + 1)

|Λ|l1+1

∫

Λ

dq2

∣
∣
∣
∣
∣
∣

1
l1!

∑

g∈C2,2+l1

ζ̃•
Λ(g; q1, q2)

∗∗∑

I∼g

cI

∣
∣
∣
∣
∣
∣

=
N

|Λ|

(
N − 1

l1

)∫

Λ

dq2

∣
∣
∣
∣
∣
∣
∣
∣

∗∗∑

I∈I(V2,l1 )
A(I)=[l1+2]

cI
1

|Λ|l1
∑

g∈C2,2+l1 :
g∼I

ζ̃•
Λ(g; q1, q2)

∣
∣
∣
∣
∣
∣
∣
∣

. (5.15)

The class V2,l1 consists of all subsets of the labels corresponding to the white
vertices {1, 2} and the black vertices {3, . . . , l1+2}. The class g ∼ I is as before
in (4.18). The compatibility graph of the polymers is a connected graph whose
blocks are complete graphs (usually called Husimi graphs, see [18,25]). Within
this structure, we denote by V1, . . . , Vr the chain of pairwise incompatible
polymers such that the label 1 ∈ V1 and the label 2 ∈ Vr. Note that r could be
equal to 1, but in this case the structure would be exactly as in the previous
theorem. We denote by ij the common label of Vj and Vj+1, j = 1, . . . , r − 1
and by V ′

s , for s from an index set S, the remaining polymers attached to the
rest of the structure by the label is. Note that by translation invariance the
activity associated with V ′

s does not depend on the label that connects it to
the chain. Hence, we can write (letting xi0 :=q1 and xir :=q2)

∑

g∈C2,2+l1 :
g∼I

ζ̃•
Λ(g; q1, q2)

=
∫

Λr−1

r−1∏

j=1

dxij

r∏

j=1

∑

g∈CVj

ζ̃•
Λ(g;xij−1 , xij )

∏

s∈S

∑

g∈CVs

ζ̃•
Λ(g;xis). (5.16)

Notice that this expression does not factorise like in the previous case
for the reason that the two white vertices are not in the same polymer. It is
exactly here that the extra integral over dq2 is helpful. By integrating over the
common labels ij , j = 1, . . . , r − 1, we obtain:

∫

Λ

dq2

∣
∣
∣
∣
∣
∣
∣
∣

∑

g∈C2,2+l1 :
g∼I

ζ̃•
Λ(g; q1, q2)

∣
∣
∣
∣
∣
∣
∣
∣

≤
∫

Λ

dq2

∫

Λr−1

r−1∏

j=1

dxij

r∏

j=1

|
∑

g∈CVj

ζ̃•
Λ(g;xij−1 , xij )|

∏

s∈S

|
∑

g∈CVs

ζ̃•
Λ(g;xis)|.

Transforming to the difference variables xij − xij−1 we see that the integrals
in the chain factorize as well. Then, by introducing the notation
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ζ̄•
Λ(V ):=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

|Λ||V |−2 supq1∈Λ

∫
Λ

dq2|
∑

g∈CV
ζ̃•
Λ(g; q1, q2)|, if V ⊃ {q1, q2},

1

|Λ||V |−1

∫
Λ

dq2|
∑

g∈CV
ζ̃•
Λ(g; q2)|, if V � q2, V ∩ {q1} = ∅

1

|Λ||V |−1 supq1∈Λ |
∑

g∈CV
ζ̃•
Λ(g; q1)|, if V � q1, V ∩ {q2} = ∅

1

|Λ||V | |
∑

g∈CV
ζ̃•
Λ(g; ∅)|, if V ∩ {q1, q2} = ∅,

(5.17)

we obtain the following upper bound for (5.15):

ρ

∗∑

I∈I(V2,l1 )
A(I)=[l1+2]

|cI |
(

N − 1
l1

) ∏

V ∈supp I

|ζ̄•
Λ(V )|

= ρ
∑

A⊂[N−1]
|A|=l1

∗∑

I:A(I)=A∪{1,2}
|cI |

∏

V ∈supp I

|ζ̄•
Λ(V )|. (5.18)

Then, it is easy to show that the abstract polymer model in V2,N−2 (with 2
white labels and N −2 black) and activities ζ̄•

Λ satisfies the hypothesis (3.8) of
Theorem 3.1 (by obtaining similar bounds as previously). Thus, from (5.18),
using (3.9), we obtain that

∗∑

I∈I(V2,N−2)
|A(I)\{1,2}|=l1

|cI ||ζ̄•
Λ|I ≤ e−cl1

∗∑

I∈I(V2,N−2)
|A(I)\{1,2}|=l1

|cI ||ζ̄•
Λ|Iecl1 ≤ Ce−cl1 ,

(5.19)

for some C > 0 as in (3.15). �

6. Towards a Combinatorial Interpretation

Until recently, it was customary to investigate the density expansions of ther-
modynamic quantities in the context of the grand-canonical ensemble. This
was because the lack of the canonical constraint (i.e. having a fixed number
of particles) allowed for special re-summations. As a result, the representa-
tion of coefficients is given by classes of graphs whose different connectivity
properties are related to combinatorial identities, see [46] for more details. For
example, for the conjugate pair of free energy and pressure this is the well
known dissymmetry theorem, see e.g. Theorem 3.7 in [25]. The correlation
functions h(n) for n ≥ 2 actually correspond to an easier structure than in the
case n = 1. Let us consider the case n = 2 and the expansion of ρ(2) in terms
of the activity. Upon the removal of one white vertex the graph decomposes
into connected components which either contain the other white vertex or not.
Collecting those not containing a white vertex, we reconstruct the expansion
of ρ(1) in terms of the activity. One repeats the same procedure for the other
white vertex. The remaining graph has the property that both white vertices
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are contained in exactly one articulation point free block. Considering the as-
sociated block-articulation point graph, the parts that do not correspond to
the special block containing the white vertices, reconstruct exactly the ρ(1)-
expansion at each black vertex of the special block. One can argue similarly
for all n ≥ 2, cf. Section 5 in [46]. Using the combinatorial language, as e.g.
in [25], this is just the following combinatorial identity interpreted as formal
power series:

C∗
n = (C•)n BAF

n (C•), (6.1)

where C∗
n, BAF

n , respectively, denotes the set of connected, articulation point
free, respectively, graphs with n special vertices. C• denotes the set of graphs
with one special vertex, but multiplied with the activity.

The case n = 1 has a more difficult structure. Let us derive it in more
detail; we have

ρ
(1)
Λ (q1)

z
=

1
ΞΛ(z)

∑

n≥1

zn−1

(n − 1)!

∫

Λn−1
dq2 . . . dqne−βHΛ(q), (6.2)

where z is the activity and ΞΛ(z) the grand-canonical partition function. Writ-
ing −βHΛ(q) =

∑
g∈Gn

∏
{i,j}∈E(g) fi,j , we split the graph and the integral over

the connected components of each graph. Recalling the definition of the activ-
ity ζ̃•

Λ(g; q1, . . . , qn) given in (2.23), we get that (6.2) equals to

1
ΞΛ(z)

∑

n≥1

1
(n − 1)!

∑

k≥1

1
k!

∑

(P0,...,Pk)∈Π(2,...,n)

×

⎛

⎝z|P0|
∑

g∈C(P0∪{1})

ζ̃•
Λ(g; q1)

⎞

⎠
k∏

j=1

⎛

⎝z|Pj |
∑

g∈C(Pj)

ζ̃•
Λ(g; ∅)

⎞

⎠

=
∑

n≥1

nzn−1 1
n!

∑

g∈Cn

ζ̃•
Λ(g; q1) =

∑

n≥1

zn−1

n!

∑

g∈C1,n

ζ̃•
Λ(g; q1), (6.3)

where 1 is a special point (hence absorbing the factor n). Upon the removal
of the white vertex, the remaining graph splits into connected components
P1, . . . , Pk. Denote by C1(P ) the set of all graphs in P ∪{1} which have 1 as a
special vertex and are still connected even on its removal. In other words, 1 is
not an articulation circle in the sense of Stell. Then, from (6.2), we have that

ρ
(1)
Λ (q1)

z
= 1 +

∞∑

n=1

1
n!

n∑

k=1

1
k!

∑

(P1,...,Pk)∈Π(1,...,n)

k∏

j=1

⎛

⎝z|Pj |
∑

g∈C1(Pj)

ζ̃•
Λ(g; q1)

⎞

⎠

= 1 +
∑

k≥1

1
k!

(∑

p≥1

zp

p!

∑

g∈C1,p+1

ζ̃•
Λ(g; q1)

)k

= exp

⎧
⎨

⎩

∑

g∈C∗
1

z|g|−1

(|g| − 1)!
ζ̃•
Λ(g; q1)

⎫
⎬

⎭
, (6.4)
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where in the last sum we denote by C∗
1 the set of connected graphs with 1 as a

special vertex and any cardinality. At this point, as described in the case n ≥ 2
before, we are able to systematically replace the black z vertices by black ρ

(1)
Λ

vertices and thus obtain that
∑

g∈C∗
1

z|g|

|g|! ζ̃
•
Λ(g; q1) =

∑

m≥1

βΛ,m(ρ(1)
Λ (q1))m = F ′

Λ(ρ(1)
Λ (q1)), (6.5)

recalling that

βΛ,m:=
1
m!

∑

g∈B1,m+1

∫

Λm

∏

{i,j}∈E(g)

(e−βV (qi−qj) − 1)dq2 . . . dqm+1, q1 fixed,

(6.6)

is the virial coefficient and FΛ(ρ):=
∑

m≥1
1

m+1βΛ,mρm+1.
This is exactly the combinatorial identity given in [25], Theorem 1.1. The

above calculation is also one of the motivations to define (following [46]):

h(1)(q1):= log(ρ(q1)) − log(z) =
∑

m≥1

βm(ρ(q1))m, (6.7)

in the thermodynamic limit. Note that because of translation invariance both
h(1)(q1) and ρ(q1) are constant. This is also closely related to the Legendre
transform giving the equivalence of ensembles between pressure and free energy
at the thermodynamic limit:

p(z) = sup
ρ

{ρ log z − f(ρ)}, f(ρ) = sup
z

{ρ log z − p(z)}.

In the first case the sup is attained at log z = f ′(ρ) and hence

h(1) = log ρ − f ′(ρ) = F ′(ρ), (6.8)

where F (ρ) = ρ(log ρ − 1) − f(ρ) is the free energy corresponding to the
“interaction” between the particles.

We conclude this section by noting that the OZ equation corresponds to
the following easy combinatorial fact. For the second correlation functions, the
expansion in the density is given by the sum over all graphs free of articulation
vertices. Hence, the block graph associated with such a graph is actually a chain
connecting the two white vertices. The OZ equation is nothing more than an
iterative representation of this fact.

7. Application to Liquid State Theory in the Gas Regime

The rigorous expansions that we present in this paper can serve as a tool
for quantifying the error in existing theories which are extensively used in
the liquid state, as well as for suggesting systematic error-improving schemes.
However, this is only possible in the gas regime where all these expansions are
valid. Extending these results to the liquid state regime is a highly nontrivial
problem, if even possible. We give here a first glimpse of this. To start, we
recall that the Ornstein–Zernike equation (2.16) is not a closed equation as
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it involves both correlation functions h(2)(q1, q2) and c(q1, q2). One suggestion
for a closure is the Percus–Yevick (PY) equation [38] that we describe below.
Starting from the OZ equation for h(2)(r) and c(r), following [47], one first
introduces a new function t as follows:

t(r) := c ∗ h(2)(r), (7.1)

where we use the convolution: c ∗ h(2)(r):=ρ
∫

c(r′)h(2)(r − r′)dr′. Then the
OZ equation takes the form

h(2)(r) = c(r) + t(r). (7.2)

Note that all involved functions (h(2), c and t) are analytic functions in ρ.
Furthermore, c(r) can be written as

c(r) = f(r)(1 + t(r)) + m(r), (7.3)

where f(r):=e−βV (r) − 1 is a known function of the potential V (r). The re-
lation (7.3) is essentially the definition of m(r) which is an analytic function
of ρ as well. Following [47], the function m can be expressed as a sum over
two-connected graphs which upon removal of the direct link f connecting the
white vertices (if it is present) it is two-connected (no articulation and no nodal
points). For example, the first term of m(r) is the graph 1−3−2−4−1. How-
ever, in [47], the manipulations involved in obtaining these infinite sums. . . have
been carried out in a purely formal way and we have not examined the impor-
tant but difficult questions of convergence and the legitimacy of the rearrange-
ment of terms. The present paper establishes this convergence with respect to
f -bonds. The convergence allows to quantify the error after truncating these
terms. For example, m is of order ρ2. Furthermore, a future plan is to investi-
gate whether another suggestion could be made, relating some of the terms in
m(r) with respect to t(r), or by introducing another function (instead of t(r))
as a candidate for a good choice for “closing” OZ equation. Combining (7.1)
with (7.2) and (7.3) we obtain:

t = [f(1 + t) + m] ∗ [f(1 + t) + m] + [f(1 + t) + m] ∗ t. (7.4)

One version of PY equation is setting m(r) ≡ 0 and obtaining a closed equation
for t(r).

Alternatively, using (7.2) and (7.3), one can introduce the functions y(r)
and d(r) by

g(2)(r) = e−βV (r)(1 + t(r)) + m(r) =: e−βV (r)y(r), y(r) =: 1 + t(r) + d(r),

(7.5)

and hence m(r) = e−βV d(r). Thus, we can rewrite (7.4) as

y = 1 + d + [f y + d] ∗ [e−βV y − 1]. (7.6)

Again, setting d(r) ≡ 0 we obtain another version of PY equation. All involved
functions are analytic in ρ and our results imply that the formal order in ρ
of d coincides with the actual order. Now, one can investigate a method of
systematically improving the PY equation, by adding some terms from d (or
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from m for hardcore potentials). For example, in [47], it was suggested to
set d equal to the first-order term in its expansion, since this gives a PY
approximation that it leads to an approximate g that is exact through terms of
order ρ2 in its virial expansion. A partial goal of the analysis in the present
paper is to provide a framework in which one can further investigate such
closure schemes and estimate the relevant error.

Other closures include the Hypernetted Chain (HNC) equation, the Born–
Green–Yvon (BGY) hierarchy and many others for which we could investigate
the validity of the corresponding graphical expansions. We conclude by men-
tioning that another direction that has attracted considerable interest is the
construction of exact solutions of the PY equation, which however usually
cannot be expressed as truncations of convergent series. But still, several sug-
gestions have been made for models of rigid spheres; see [10] and the references
therein for a comparison of the different methods.
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