161 research outputs found

    Turbulence Model Implementation and Verification in the SENSEI CFD Code

    Get PDF
    This paper outlines the implementation and verification of the negative Spalart-Allmaras turbulence model into the SENSEI CFD code. The SA-neg turbulence model is implemented in a flexible, object-oriented framework where additional turbulence models can be easily added. In addition to outlining the new turbulence modeling framework in SENSEI, an overview of the other general improvements to SENSEI is provided. The results for four 2D test cases are compared to results from CFL3D and FUN3D to verify that the turbulence models are implemented properly. Several differences in the results from SENSEI, CFL3D, and FUN3D are identified and are attributed to differences in the implementation and discretization order of the boundary conditions as well as the order of discretization of the turbulence model. When a solid surface is located near or intersects an inflow or outflow boundary, higher order boundary conditions should be used to limit their effect on the forces on the surface. When the turbulence equations are discretized using second order spatial accuracy, the edge of the eddy viscosity profile seems to be sharper than when a first order discretization is used. However, the discretization order of the turbulence equation does not have a significant impact on output quantities of interest, such as pressure and viscous drag, for the cases studied

    Unsteady flow in a supercritical supersonic diffuser

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77051/1/AIAA-10045-786.pd

    CFL3D: Its History and Some Recent Applications

    Get PDF
    The history of the Computational Fluids Laboratory -3D (CFL3D) Navier-Stokes computer code is discussed and a comprehensive reference list is given. Three recent advanced applications are presented (1) Wing with partial-spanflap, (2) F/A-18 with forebody control strake, and (3) Noise predictions for an advanced ducted propeller turbomachinery flow

    Mitigation of Engine Inlet Distortion Through Adjoint-Based Design

    Get PDF
    The adjoint-based design capability in FUN3D is extended to allow efficient gradient- based optimization and design of concepts with highly integrated aero-propulsive systems. A circumferential distortion calculation, along with the derivatives needed to perform adjoint-based design, have been implemented in FUN3D. This newly implemented distortion calculation can be used not only for design but also to drive the existing mesh adaptation process and reduce the error associated with the fan distortion calculation. The design capability is demonstrated by the shape optimization of an in-house aircraft concept equipped with an aft fuselage propulsor. The optimization objective is the minimization of flow distortion at the aerodynamic interface plane of this aft fuselage propulsor

    Cluster size dependence of high-order harmonic generation

    Get PDF
    We investigate high-order harmonic generation (HHG) from noble gas clusters in a supersonic gas jet. To identify the contribution of harmonic generation from clusters versus that from gas monomers, we measure the high-order harmonic output over a broad range of the total atomic number density in the jet (from 3*10^16 cm^{-3} to 3x10^18 cm{-3}) at two different reservoir temperatures (303 K and 363 K). For the firrst time in the evaluation of the harmonic yield in such measurements, the variation of the liquid mass fraction, g, versus pressure and temperature is taken into consideration, which we determine, reliably and consistently, to be below 20% within our range of experimental parameters. By comparing the measured harmonic yield from a thin jet with the calculated corresponding yield from monomers alone, we find an increased emission of the harmonics when the average cluster size is less than 3000. Using g, under the assumption that the emission from monomers and clusters add up coherently, we calculate the ratio of the average single-atom response of an atom within a cluster to that of a monomer and find an enhancement of around 10 for very small average cluster size (~200). We do not find any dependence of the cut-off frequency on the composition of the cluster jet. This implies that HHG in clusters is based on electrons that return to their parent ions and not to neighbouring ions in the cluster. To fully employ the enhanced average single-atom response found for small average cluster sizes (~200), the nozzle producing the cluster jet must provide a large liquid mass fraction at these small cluster sizes for increasing the harmonic yield. Moreover, cluster jets may allow for quasi-phase matching, as the higher mass of clusters allows for a higher density contrast in spatially structuring the nonlinear medium.Comment: 16 pages, 6 figure

    Evidence of a North Atlantic right whale calf (Eubalaena glacialis) born in northeastern U.S. waters

    Get PDF
    Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Marine Mammal Science 25 (2009): 462-477, doi:10.1111/j.1748-7692.2008.00261.x.The general temporal and geographical patterns of North Atlantic right whale (Eubalaena glacialis) calving events have been clarified during the last quarter century of research (Kraus and Rolland 2007). Right whales give birth to a single calf every three to five years after a twelve- to thirteen-month gestation period (Best 1994; Kraus and Hatch 2001). Most calves are born between December and March in the coastal waters of the southeastern U.S., the only known calving ground for this species (Kraus et al. 2007; Winn et al. 1986). Although historical whaling records suggest that there were once two winter calving grounds, one off the southeastern U.S. and the other off northwestern Africa, it appears that only the former is still used today (Notarbartolo di Sciara et al. 1998; Reeves and Mitchell 1986; 1988). In the late winter, right whales leave the calving grounds and migrate to their foraging grounds off the northeastern U.S. and Canadian Maritimes. North Atlantic right whales can be found in Cape Cod and Massachusetts Bays throughout the late winter and early spring (Hamilton and Mayo 1990; Mayo and Marx 1990; Schevill et al. 1986), in the Great South Channel during mid-spring to early summer (Kenney et al. 1995), and in the Bay of Fundy (Kraus et al. 1982) and on the Scotian Shelf (Mitchell et al. 1986; Stone et al. 1988) during the summer and fall. Some individuals (mostly pregnant females and juveniles) return to the calving grounds off the southeastern U.S. in December and January, but the location of the rest of the population during those months is currently unknown (although recent evidence suggests that right whales are present in the Gulf of Maine and on the Scotian Shelf throughout the winter (Mellinger et al. 2007; T. Cole pers comm. ; S. Van Parijs pers comm. )

    Lower Temperature Annealing of Vapor Diffused Nb\u3csub\u3e3\u3c/sub\u3eSn for Accelerator Cavities

    Get PDF
    Nb3Sn is a next-generation superconducting material for the accelerator cavities with higher critical temperature and superheating field, both twice compared to Nb. It promises superior performance and higher operating temperature than Nb, resulting in significant cost reduction. So far, the Sn vapor diffusion method is the most preferred and successful technique to coat niobium cavities with Nb3Sn. Although several post-coating techniques (chemical, electrochemical, mechanical) have been explored to improve the surface quality of the coated surface, an effective process has yet to be found. Since there are only a few studies on the post-coating heat treatment at lower temperatures, we annealed Nb3Sn-coated samples at 800 C - 1000 C to study the effect of heat treatments on surface properties, primarily aimed at removing surface Sn residues. This paper discusses the systematic surface analysis of coated samples after annealing at temperatures between 850 C and 950 C

    Size and density redistribution by a rod obstacle in a cluster jet for quasi-phase matching of high harmonic generation

    Get PDF
    We investigate the the possibility to realize a fully coherent XUV light source generating wavelengths down to 4 nm by using high-order harmonic generation (HHG) in an ionized medium. Due to the strong ionization, current p We investigate the possibility to realize a fully coherent XUV light source generating wavelengths down to 4 nm by using high-order harmonic generation (HHG) in an ionized medium. Due to the strong ionization, current phase-matching techniques for HHG are not suitable. Instead, we will investigate quasi-phase matching (QPM) over an extended interaction length to increase the output pulse energy. For this, we will prepare a cluster jet from a 5 mm long supersonic nozzle operated at high backing pressure (up to 75 bar). The modulation for QPM is obtained by placing either an array of wires or slits on top of the exit of the nozzle. Here, we report on the characterization of the modulated argon cluster jet. We apply Rayleigh scattering imaging and interferometry to infer the cluster size and total atomic number density distribution in the jet. Initial experiments concern the modulation of the jet by placing a 2 mm rod above the nozzle. The rst results on the cluster size and density distribution will be compared with the simulation results from our 2D fluid dynamics model

    Magnetic Flux Expulsion in Superconducting Radio-Frequency Niobium Cavities Made From Cold Worked Niobium

    Get PDF
    Trapped residual magnetic field during the cooldown of superconducting radio frequency (SRF) cavities is one of the primary source of RF residual losses leading to lower quality factor. Historically, SRF cavities have been fabricated from high purity fine grain niobium with grain size ~50 - 100 μm as well as large grain with grain size of the order of few centimeters. Non-uniform recrystallization of fine-grain Nb cavities after the post fabrication heat treatment leads to higher flux trapping during cooldown, hence the lower quality factor. We fabricated two 1.3 GHz single cell cavities from cold-worked niobium from different vendors and processed along with cavities made from SRF grade Nb. The flux expulsion and flux trapping sensitivity were measured after successive heat treatments in the range 800 – 1000°C. The flux expulsion from cold-worked fine-grain Nb cavities improves after 800°C/3 hours heat treatments and it becomes similar to that of standard fine-grain Nb cavities when the heat treatment temperature is higher than 900°C
    • …
    corecore