
Turbulence Model Implementation and Verification in the
SENSEI CFD Code

Charles W. Jackson∗

NASA Langley Research Center, Hampton, VA, 23681

William C. Tyson† and Christopher J. Roy‡

Virginia Tech, Blacksburg, VA, 24061

This paper outlines the implementation and verification of the negative Spalart-Allmaras
turbulence model into the SENSEI CFD code. The SA-neg turbulence model is implemented in
a flexible, object-oriented framework where additional turbulence models can be easily added.
In addition to outlining the new turbulence modeling framework in SENSEI, an overview of
the other general improvements to SENSEI is provided. The results for four 2D test cases
are compared to results from CFL3D and FUN3D to verify that the turbulence models are
implemented properly. Several differences in the results from SENSEI, CFL3D, and FUN3D
are identified and are attributed to differences in the implementation and discretization order
of the boundary conditions as well as the order of discretization of the turbulence model.
When a solid surface is located near or intersects an inflow or outflow boundary, higher order
boundary conditions should be used to limit their effect on the forces on the surface. When the
turbulence equations are discretized using second order spatial accuracy, the edge of the eddy
viscosity profile seems to be sharper than when a first order discretization is used. However,
the discretization order of the turbulence equation does not have a significant impact on output
quantities of interest, such as pressure and viscous drag, for the cases studied.

I. Introduction
This paper summarizes the implementation of turbulence modeling in the research code SENSEI (Structured,

Euler/Navier-Stokes Explicit-Implicit solver). SENSEI is a compressible, cell-centered, finite-volume CFD code written
in modern Fortran that previously could only solve the Euler and laminar Navier-Stokes equations [1]. For this paper,
SENSEI is upgraded to solve the Favre-Averaged Navier-Stokes equations with a linear eddy viscosity turbulence
model: the negative variant of the Spalart-Allmaras one-equation model [2, 3]. The governing equations and their
discretizations are presented in detail. Since SENSEI is a working research code with multiple developers, a major
priority is to implement the turbulence models in the least intrusive way possible while remaining flexible enough
to easily incorporate additional models in the future. This is achieved by implementing the turbulence models in an
object-oriented manner. The object-oriented approach, which is discussed in detail, improves both the modularity and
simplicity of the code base. To further exploit these benefits, the object-oriented paradigm is used to redesign several
other areas of the code including the linear system and the boundary conditions. These modifications improve the
flexibility and simplicity of the code and have facilitated the implementation of new capabilities.

Verification cases are run to ensure proper implementation of the turbulence models. These are the 2D verification
cases provided by the Turbulence Modeling Resource (TMR) website [4] and include flow over a zero pressure gradient
flat plate, a coflowing jet, a bump-in-channel, and flow around an airfoil. SENSEI results for these cases are presented
along with a comparison with TMR results from CFL3D [5] and FUN3D [6]. It is common for other codes to only use
first-order spatial discretizations for the turbulence equations, while using second-order discretizations for the mean flow
equations. This is the case for the results from FUN3D and CFL3D presented on the TMR website. Because of how
the turbulence models are implemented in SENSEI, it is possible to change the discretization order of the turbulence
equation. This design feature is used to examine the effect of using mixed spatial discretization orders on the final
solution. This paper also examines the effect of boundary condition implementations on the final solution. Specifically,
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different order boundary conditions are used and the effect these differences have on quantities of interest are reported
for each problem.

II. FANS Governing Equations
The Favre-Averaged Navier-Stokes equations (FANS) describe the motion of a compressible, turbulent fluid and are

a statement of conservation of mass, momentum, and energy [7]. They are obtained by performing Favre-averaging on
the Navier-Stokes equations. There are some terms that are modeled and some approximations including

• the Boussinesq approximation to model the Reynolds stress tensor,
• an approximation to model the turbulent heat flux,
• and a model for the lumped together molecular diffusion and turbulent transport terms.

These approximations and the derivation of the final form of the FANS equations are presented in detail in Appendix A.
The final form of the FANS equations solved is
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where the combination of the laminar and turbulent stresses is defined as
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and the effective viscosity, µe f f , and effective thermal conductivity, ke f f , are defined as

µe f f = µ + µT , (3)
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Finally, Si j is the mean strain rate, PrL is the (laminar) Prandtl number, and PrT is the turbulent Prandtl number. To
fully close the system, a turbulence model must be used to model the turbulent eddy viscosity, µT , and the turbulent
kinetic energy, k.

III. Spalart-Allmaras Turbulence Model

A. Governing Equations
The Spalart-Allmaras turbulence model [2] (SA) is a one-equation turbulence model that models the turbulent eddy

viscosity, νT , using a turbulence working variable, ν̃. The turbulence working variable, ν̃, is related to the turbulent
eddy viscosity, νT , through the relationship
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The behavior of the turbulence working variable, ν̃, is governed by the transport equation
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where P is a production term, D is a destruction term, and σ and cb2 are constants. The production and destruction
terms are given by
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The modified vorticity, S̃, is given by

S̃ = S +
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κ2d2 fv2, fv2 = 1 −
χ
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, (8)

where S is the magnitude of vorticity and d is the distance to the nearest wall. The remaining terms are given by
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The empirical constants for this turbulence model are:

cb1 = 0.1355 σ = 2/3 cb2 = 0.622 κ = 0.41

cw1 =
cb1

κ2 +
(1 + cb2)

σ
cw2 = 0.3 cw3 = 2 cv1 = 7.1

ct1 = 1 ct2 = 2 ct3 = 1.2 ct4 = 0.5
rlim = 10

As Allmaras et al. [3] point out, the original SA model was written in nonconservation form and is valid for
both incompressible and compressible flows. However, in order to easily implement the equation into the current
finite-volume framework in SENSEI, Eq. 6 is written in conservation form by combining the original equation with
conservation of mass. Also, because the Spalart-Allmaras model does not model the behavior of the turbulent kinetic
energy, all terms in Eq. 1 containing the turbulent kinetic energy are neglected.

B. Boundary Conditions
The boundary conditions for the turbulence working variable, ν̃, are given as

no-slip wall: ν̃ = 0, symmetry plane:
∂ν̃

∂n
= 0, freestream:

ν̃

ν
≈ 3 to 5.∗

C. Modifications Implemented
To ensure that the numerical solution is physically realizable, it is sometimes necessary to limit or adjust solution

variables during the solution procedure to prevent negative values. The modification given by Allmaras et al. [3] is
implemented here to prevent negative values of the modified vorticity, S̃, namely

S̃ =
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where cv2 = 0.7 and cv3 = 0.9 and
S̄ =

ν̃

κ2d2 fv2. (11)

To address some of the convergence issues we observe in the initial transient states, we have also chosen to implement
the SA-neg model [3]. When solving some of the cases, as the solution is going through initial transients, the working
variable can be driven negative, especially near the edge of a wake. However, a negative value of ν̃ is not allowed in the
original SA model, so the working variable in these cells must be floored to zero. Unfortunately, in the next iteration,
the update might attempt to reduce the working variable again, causing a situation where the solution is not allowed to
evolve further. To address this issue, the SA-neg model was created to allow ν̃ to be negative. The SA-neg model is the
same as the SA model when ν̃ is greater than or equal to zero. However, when ν̃ is negative, µT is set to zero and Eq. 6
is modified to be
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∗This range of the working variable is associated with a fully turbulent freestream value (see [8] for more details). In this study, a freestream
value of ν̃ = 3.0ν is used.
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where
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3
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(14)

and cn1 = 16. The final solutions for all of the tested cases only have very small regions of negative ν̃, typically at the
edges of the turbulent region.

IV. Finite-Volume Discretization
The Favre-Averaged Navier-Stokes (FANS) equations are discretized using a second-order, cell-centered, finite-

volume discretization. In weak, conservation form, the FANS may be written as
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where ∂Ωi is the area of the surface which bounds a fixed control volume, Ωi , n̂ is the outward unit normal on the
surface of the control volume, and ®S is a source term. The vector of conserved variables, ®U, the inviscid contribution to
the flux, ®Fi , and the viscous contribution to the flux, ®Fv , for the mean flow equations are given by
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where Ṽn = ũn̂x + ṽn̂y + w̃n̂z is the velocity normal to the surface of the control volume and the components of Θ̃ are
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where MDTT is the lumped molecular diffusion and turbulent transport term for the turbulent kinetic energy of a given
model and ke f f is the effective thermal conductivity given by Eq. 4. The SA-neg model does not use the lumped MDTT
term but it is included in other turbulence models such as Menter’s k-ω SST model [9].

MUSCL extrapolation [10] is used to reconstruct the left and right primitive states at the faces giving SENSEI a
second-order accurate spatial discretization. These left and right states are used to estimate the inviscid fluxes using
Roe’s flux difference splitting method [11]. The viscous fluxes are computed using a central flux scheme where the
analytic flux at an interface is computed using the average of the left and right states. The Green-Gauss theorem is used
to compute face gradients for the viscous flux by integrating around a subvolume centered at a given face. The nonlinear
solution is marched in time to a steady-state using either explicit Runge-Kutta time integration [12] or the fully implicit
backward Euler method as described in [1].

The conserved variable vector, ®U, and the inviscid and viscous flux vectors, ®Fi and ®Fv , for the Spalart-Allmaras
turbulence model are given by
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The source term for the Spalart-Allmaras turbulence model is given by
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The modified equation when ν̃ is negative is discretized in a similar manner.
An important detail in the implementation of turbulence modeling is how to properly treat the inviscid contribution to

the turbulent flux. Commonly the turbulent flux is computed in an uncoupled fashion, which treats the turbulence equation
as a scalar transport equation. However, many authors have pointed out the fault with this type of treatment [13, 14]. In
treating the turbulence equation as a scalar transport equation, the turbulence convects at a velocity, which does not
account for the effect of the turbulence. In the implementation used here, users are given the option to compute the
inviscid turbulent flux using either the flux function of Roe or the flux function of Roe and Pike [15]. The flux function
of Roe treats the flux in the typical uncoupled manner while the flux function of Roe and Pike properly accounts for the
effect of the turbulence on the convection velocity. The reader is referred to [14, 15] for more details regarding the
proper treatment of the turbulent flux.

V. Improvements in SENSEI 2.0
In addition to the implementation of turbulence modeling, several other modifications have been made to the code

base to improve its flexibility, modularity, and speed. These improvements build on the original design choices made
in [1], but extend them to include a more object-oriented approach. Several improvements are also made to the implicit
solver, enabling much higher CFL values to be used and for the nonlinear system to converge significantly faster.

A. Object Oriented Programming in SENSEI
For the implementation of the turbulence modeling framework, two main goals are established: modularity and

encapsulation. Modularity is important because we wanted to be able to add new turbulence models easily in the future
using the existing framework. Encapsulation is important because we want the rest of the code to be agnostic as to
whether a turbulence model is being used and we want the turbulence model’s variables and routines to be protected
from the rest of the code base. These two goals are met by using object-oriented programming (OOP).

OOP meets the goal of modularity through polymorphism. Polymorphism allows a user to define a common
interface for a routine and have that routine be implemented in multiple ways depending on the type. This means that
the majority of the code knows it is using a turbulence model but it does not know the specific turbulence model it is
using. In Fortran 03/08, polymorphism is achieved by defining an abstract derived type. The abstract derived type
can have data and routines associated with that type. However, because the type is abstract, some of these routines are
allowed to remain unimplemented and their implementation is deferred to a child type. This allows the abstract type to
have routines that are common to all such objects, such as output and common initialization and destruction. However,
the abstract type does define interfaces for these deferred routines. These interfaces allow the rest of the code to use the
object in the same manner no matter which specific type is being used. When this abstract type is extended by another
derived type, that child type must implement all of the deferred procedures.

Writing code in this object-oriented manner also provides some level of encapsulation. Encapsulation forces
separation between different portions of the code through abstraction. This means that one part of the code only has
access to another part of the code through a defined (typically polymorphic) interface. This encapsulation protects, for
instance, the constants associated with the SA-neg model from being accidentally changed somewhere else in the code
because these variables are not accessible outside of the SA-neg model’s routines. Going the other way, the turbulence
model does not need to know how it is going to be used (for instance in a primal solve, an error estimation procedure,
or an adjoint solve). This removes the burden on the programmer to understand the whole program all at once, and
allows them to focus on the current portion of the code. Unfortunately, the Fortran 2008 standard requires all deferred
procedures to be public if they are being implemented in a different module, reducing the amount of encapsulation
compared to C++ or other object-oriented programming languages.† To our knowledge, there is not a keyword analogous
to the protected keyword in C++, which allows classes that extend the parent class to have access to the private
routines of the parent. Because of this, Fortran programmers are forced to make public routines that should be private
or protected. This will allow routines that should be protected to be called from anywhere, defeating the purpose of

†Some versions of some compilers will still allow this behavior but it is not recommended since it does not follow the standard (see interpretation
F08/0052 in WG5 document N1875).

5



encapsulation. Despite this limitation, the object-oriented additions to the Fortran standard allow for encapsulation of
some routines and private variables, which is beneficial.

There are also several indirect benefits of using OOP, such as forcing programmers to adopt good programming
practices and improving the testability of the code. OOP forces the programmer to plan ahead and decide what routines
are needed to achieve a task and how the rest of the code should interact with the new feature. This planning is
important in any programming effort, but it is our experience that programming in an object-oriented manner forces
the programmer to follow this best practice. Writing a code base in an object-oriented manner can also simplify the
software maintenance. Typically, the objects are single entities that are easier to unit test because the derived types can
only be interacted with in certain predefined ways, through their interface. As long as those implemented routines are
sufficiently tested, the derived type should be safe to use anywhere in the code because you have limited the possibility
for unintended side effects. The abstract derived types also assist in software maintenance by reducing repeated code.
Routines that all of the types share, such as output, only need to be written once and they are available for all of the
extended types. Because the objects are encapsulated, they are easier to use in multiple places in the code and even in
other code bases. Because of these inherent benefits, the turbulence modeling and several other parts of the code are
now written in an object-oriented manner. These changes are summarized in the following sections.

1. Turbulence Modeling
The authors’ approach to implementing the turbulence modeling framework is to create an abstract parent derived

type, turb_model_t, which contains routines common to all turbulence models such as outputting data to file and
initialization. The parent derived type defines the interface for deferred procedures that all turbulence models require but
would implement differently. Examples of these deferred procedures are calculating the turbulent eddy viscosity, µT , or
determining the production, destruction, and dissipation terms in the turbulence equations. For the full list of procedures
in turb_model_t, see Appendix B. Each turbulence model is then implemented by extending turb_model_t and
providing implementations to the routines that were deferred by this parent type. This parent-child structure ensures that
a minimal amount of code is repeated and that each turbulence model has the flexibility to implement its equations
accordingly.

During code start-up and initialization, SENSEI reads in whether a turbulence model is required. SENSEI then
creates an instance of the parent turbulence model object with the specific child type corresponding to the desired
turbulence model. Because the SA-neg model has been implemented in conservation form using this object-oriented
approach, the same routines used to form the residual and LHS for the mean flow are used to form the residual and LHS
for the turbulence equations. If no turbulence model is desired for a given computation, a “null" turbulence model child
type is used. This “null" turbulence model returns nothing from its routines and is only present so that the interface with
the rest of SENSEI is the same whether a turbulence model is being used or not. With this object-oriented structure, it is
straight-forward to implement a new turbulence model (even one with multiple equations) since one only has to create a
child derived type that implements the deferred procedures and the rest of the code works as expected. For example, the
explicit routines for Menter’s k-ω SST model [9] only took one day to implement once the framework was complete.
The linearizations of the k-ω model have not yet been implemented, which is why this model does not appear in this
paper.

2. Linear System
Another area of the code that has been switched to an object-oriented paradigm is the linear system routines.

Previously, the data and routines associated with the linear system were stored in several different modules in the code
base. While this approach worked, it was not very flexible and was hard coded to use the compressed sparse row (CSR)
format with ILU0 preconditioning. These routines have been grouped into logical units and encapsulated in abstract
types. The first of these abstract types is the matrix type, which stores a matrix and provides interfaces for routines like
matrix-vector products, row scaling, transpose, etc. We then extend the abstract matrix type to implement different
matrix storage types such as: dense, COO (coordinate format), CSR, DIA (diagonal format), etc. Likewise, we have
encapsulated all of our preconditioners into derived types that can then be applied to any matrix type. We created an
iterative solver derived type, which is extended by the different solvers: GMRES [16] and Bi-CGSTAB [17]. Finally,
we created a master linear system derived type, which holds an instance of a matrix, a RHS vector, an instance of a
preconditioner, and an instance of an iterative solver to use. Because all of the variables and routines associated with the
linear system are in one place, it is easy to keep track of all of the parts of the linear solve process. Also, because all of
these routines are written in this modular, object-oriented manner, one could use any combination of matrix storage type,
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preconditioner type, and iterative solver together (although certain combinations will be more efficient than others).

3. Boundary Conditions
The boundary conditions have also been rewritten in an object-oriented manner. The abstract boundary type stores

the cells over which a given boundary condition is applied, which block face the boundary is on for indexing purposes
(for instance ξmin or ηmax), and other useful information. There are also some common initialization routines stored in
the abstract boundary derived type. Each different boundary condition (farfield, wall, symmetry, etc.) is then a derived
type that extends this boundary type. These boundary condition child derived types must implement the routines to fill
ghost cells, calculate ghost cell Jacobians, and, if they are flux-based boundary conditions, calculate the boundary flux
and the flux Jacobian. Each boundary condition can also store extra information necessary for that specific boundary
condition such as freestream values. Having this common interface greatly reduces the burden on the other parts of
the code. The rest of the code no longer has to hold information about where boundaries are, have individual loops
over the 6 different block faces, or have switch statements to choose the specific BC. The rest of the code also does not
have to know how or where to store the various inputs for the different boundary conditions as each stores the specific
information it needs. The polymorphism hides these switch statements so most of the boundary routines have the same
form: a loop over each boundary condition and then a loop over the faces associated with that boundary condition. The
build-up of the residual Jacobian is also simplified because all boundary conditions have the same interface, which
returns the same expected information, despite the fact that each boundary condition has a different Jacobian with
respect to different interior stencils.

B. Implicit Solver
SENSEI uses a backward Euler time integration scheme to perform implicit time-stepping. To populate the left hand

side (LHS) of this system, the Jacobians of the residual are hand-coded. Because of the complexity of hand-coding the
Jacobians, the mean flow governing equations are solved in one linear system and the turbulence equations are solved
in another. This means that the Jacobian of the mean flow equations only has to be taken with respect to the mean
flow primitive variables. Likewise, the turbulence equations only have to be linearized with respect to the turbulence
variables. This explicit coupling between the sets of equations will decrease the stability and convergence rate for these
problems [18]. However, the equations are much simpler to linearize if they are linearized as two decoupled systems,
and SENSEI is able to converge all of the problems tested without issue.

Nondimensionalizing the governing equations gave large improvements to the performance of our implicit time-
stepping. Reference quantities for the density, temperature, and speed of sound are used to nondimensionalize the
mean flow equations. Then, based off of the reference temperature and density, a reference viscosity is calculated to
nondimensionalize ν̃. For more details on the nondimensionalization, refer to [19]. Because these equations have
been nondimensionalized the condition number for the LHS is greatly improved. For example, the first-order residual
Jacobian about the solution to the flat plate problem on the coarsest grid is compared in dimensional and nondimensional
form. The condition number for the dimensional mean flow Jacobian is 1.5E+14 while the condition number for the
nondimensional Jacobian is 2.8E+06. This is because, after nondimensionalization, all of the equation’s residuals
are similar in magnitude as opposed to very different orders of magnitude for the dimensional equations. Because
the condition number is so much lower, much higher CFL values can be used to solve the nondimensional system
without significant loss of precision. These factors allow the nondimensional problem to converge much faster than the
dimensional problem.

After the turbulence equations are linearized, it is important to check that all the linearizations are correct and that the
build up of the LHS is correct. This is checked through a finite-difference approximation of the LHS. The final solution
for the airfoil and flat plate cases are perturbed, the residual recalculated, and a second-order central finite-difference is
used to estimate the corresponding term in the LHS. Several issues were found using this method, specifically some
errors in the linearizations of the boundary conditions and the gradients. For both of these cases, the implicit LHS
matched the finite-difference LHS to within discretization error (1.0E-10). With the correct, nondimensionalized, LHS
matrices for the mean and turbulence equations, we were able to converge all of the test cases to machine zero well
within 1000 iterations, even on the finest grids of approximately one million cells.
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VI. Results
To verify the turbulence model implementation within SENSEI, verification cases are performed and the results

are compared to those of CFL3D and FUN3D. These codes are selected for comparison because they have undergone
rigorous code verification using MMS for the SA model [20] and results for these codes are publicly available. The
verification cases examined are from the NASA Langley Turbulence Modeling Resource (TMR) website [4]. This is an
excellent resource describing the models as well as providing both verification and validation cases and results from
CFL3D and FUN3D. For this study, all four of the 2D verification cases provided on the TMR website are used:

• the 2D zero pressure gradient flat plate (2DZP),‡
• the 2D coflowing jet (2DCJ),§
• the 2D bump-in-channel (2DB),¶ and
• the 2D airfoil near-wake (2DANW).‖

The airfoil case uses the set of grids from the website that extend the farfield boundary to 500 chord lengths away. For a
more detailed description of these cases, including the geometry, grids, and flow state, refer to the TMR website. All of
the cases run in SENSEI are converged to machine zero. During the comparison of our implementation of the SA-neg
model with other codes, namely CFL3D and FUN3D, several differences are noticed. These differences are determined
to stem from using different order discretizations and boundary conditions as well as an error in our wall distance
calculation.

A. Wall Distance
As a first pass, a naive implementation of the wall distance function was implemented to find the distance to the

nearest node or face center. While this is easy to do and relatively accurate, it is not exactly correct and even small
errors in this distance can have significant effects on the final solution. The correct distance should be the shortest
distance to any point on the discrete boundary rather than the small subset of nodes and face centers. The results for the
stretched Cartesian meshes (2DZP and 2DCJ) do not change because the wall distance calculated using both the naive
and correct methods are the same (the center of the face is the nearest point to the cell centers). However, Fig. 1 shows
the calculated wall distance is different for more complex curved boundaries like in the 2DB and 2DANW cases. Fig. 1
shows the relative error in the naive wall distance on the finest grid level for these two cases. The grid lines coming off
the bump case are close to normal (as shown in Fig. 2a) so only a small error of at most 3% is committed using the naive
approach. However, for the 2DANW case, the grid lines do not come off the airfoil in the normal direction (as shown
in Fig. 2b) so some of the naive wall distances are as much as 30% off in the high aspect ratio cells in the boundary
layer. These errors, even the small 3% error for 2DB, have a significant effect on the working variable’s production and
destruction, and thus the final solution. The difference in the skin friction along the bump and airfoil using the two
different wall functions can be seen in Fig. 3. It is clear that the regions where the wall distance function is too large are
the same regions where the skin friction is also larger than it should be. This makes intuitive sense because the model
thinks these cells are farther from the wall then they actually are, so the eddy viscosity in this region is excessively large.
The remainder of the results presented in this paper use the correct wall distance calculation.

‡https://turbmodels.larc.nasa.gov/flatplate.html
§https://turbmodels.larc.nasa.gov/shear.html
¶https://turbmodels.larc.nasa.gov/bump.html
‖https://turbmodels.larc.nasa.gov/airfoilwakeverif500c.html
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Fig. 1 Percent error in the naive wall distance calculation for 2DB and 2DANW on the finest grid.
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Fig. 3 Coefficient of friction along the surface calculated using the naive and correct wall distance.

B. Comparison of Codes
To verify that our implementation of the SA-neg model is correct, it is compared to the results provided on the

TMR website from, FUN3D and CFL3D. It is a common technique, including the technique employed by FUN3D
and CFL3D for the TMR results, to solve the mean flow equations second-order accurate and the turbulence equation
first-order accurate (mixed-order). To examine the impact of this decision, SENSEI will be used to solve all of the
equations with both second-order and mixed-order discretizations.

Another potential difference between the codes is the boundary condition implementation and order of accuracy.
The wall boundary condition in SENSEI is implemented by setting the inviscid flux on the boundary to the pressure flux
(since Ṽn = 0 at the wall):

®Fi,w =
[
0 pw n̂x pw n̂y pw n̂z 0

]T
, (21)

where pw is the pressure at the wall boundary face. The user can select the order of extrapolation used to calculate
the pressure at the wall by selecting the order of accuracy to use for the boundary condition. Typically, this would be
first-order (constant extrapolation, pw = p1) or second-order (linear extrapolation, pw = 1.5p1 − 0.5p2) where p1 is
the pressure in the cell next to the boundary and p2 is the pressure in the next interior cell. When integrating surface
forces (viscous and pressure forces), SENSEI will use this same extrapolation order to extrapolate the temperature and
pressure to the boundary so that the integrated forces match the state used for the discrete boundary condition. When
solving the problem with first-order boundary conditions, the final force distributions and integrated quantities do not
change significantly if a linearly extrapolated pressure to the wall is used instead of pw . In most cases, the order of
boundary condition should be the same as the interior discretization scheme. However, for some cases, it is necessary to
run with lower-order boundary conditions to avoid potential stability issues. Thus, the effect of first- and second-order
boundary conditions (denoted as bc1 and bc2) on the final solution is presented below.

1. 2DZP
The first case examined is zero pressure gradient flow over a flat plate (2DZP). The grid convergence for the drag

coefficient on the plate and the coefficient of friction at x = 0.97 are compared in Fig. 4. The observed order of accuracy
calculated on the final three grids is shown in Table 1. All of these results match well, with there only being a slight
difference between the first- and second-order turbulence on the coarser grids. It is also noted that these quantities are
effectively the same regardless of the order of boundary conditions used. However, upon closer examination, some
interesting differences became apparent. The differences in the skin friction distribution exist mainly at the leading and
trailing edge of the plate as shown in Fig. 5.

Fig. 5a shows that CFL3D and SENSEI, both cell-centered, finite-volume codes, have a much higher skin friction
near the leading edge of the plate compared to the node-centered, finite-volume code FUN3D. Fig. 5a also shows that
changing the boundary condition order makes essentially no difference in the coefficient of friction at the front of the
plate (less than 1.0E-4% difference). However, the order of boundary conditions does have an effect on the skin friction
at the trailing edge of the plate, as shown in Fig. 5b.

The end of the plate occurs at the outflow boundary where the no-slip wall intersects the subsonic pressure outflow
boundary condition. At this intersection of boundary conditions, the order of extrapolation from the interior to the
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ghost cells of the outflow boundary does have an impact on the skin friction (0.3% difference). Fig. 5b shows that if the
second-order boundary conditions are used then the skin friction reduces monotonically toward the outflow boundary as
expected. However, if a first-order boundary condition is used, then the low-order boundary condition will affect the
behavior of the skin friction in the cell at that boundary as well as a significant number of cells upstream (in this case
approximately 15 cells). This effect can be seen in both SENSEI and CFL3D, which match very well when using the
same settings (mixed-order with first-order outflow).

Changing the discretization order for the turbulence model has a slight effect (approximately 0.03% difference).
There is a very slight difference in the velocity profiles for the first and second-order turbulence solution but it is so
small that it cannot be seen in a plot. However, one difference that is more significant is the effect on the eddy viscosity
profile as shown in Fig. 6. The profile of the normalized turbulence eddy viscosity appears largely the same between
the codes, except for the outer edge of the turbulent region. It appears like the edge of the turbulent region is slightly
sharper using the higher-order discretization. This is likely because there is less numerical dissipation smearing out the
edge of the region of high eddy viscosity. However, this is a fairly small difference away from the body and it does not
change the mean flow solution or the quantity of interest (drag) in any significant way on the finer meshes.
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Fig. 4 2DZP: Grid convergence of various quantities.

Table 1 2DZP: Observed order of accuracy on the three finest grids.

SENSEI SENSEI
second-order mixed-order CFL3D FUN3D

Observed Order, Cf 2.26 2.66 1.98 1.34
Observed Order, CD 1.53 2.04 1.75 0.80
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Fig. 5 2DZP: Skin friction differences between the different codes and boundary condition orders, highlighting
the two regions of difference.
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Fig. 6 2DZP: Turbulent eddy viscosity profile at x = 0.97.

2. 2DCJ
The next case studied is the coflowing jet case (2DCJ). This case, depicted in Fig. 7, is a fast inner jet and a slower

outer freestream flow initially separated by a no-slip wall and then mixing in a shear layer downstream of the dividing
plate. For 2DCJ, there are two main quantities of interest used to compare the results of SENSEI to CFL3D and FUN3D:
the drag coefficient on the dividing plate, and the local u-velocity at 3 stations. The stations are located on the symmetry
plane, y = 0.0, and have x coordinates of (1) x = 2.71623, (2) x = 29.2468, and (3) x = 95.501. The grid convergence
for these values are presented in Fig. 8, and the observed order of accuracy is provided in Table 2. Highlighting the need
to use lower-order boundary conditions for some cases, the solution on the second coarsest grid can not be found when
the second-order boundary conditions are used. On this grid level, oscillations in the turbulence working variable set up
and never went away, halting the convergence of the problem. These oscillations occurred where the edge of the shear
layer meets the outflow boundary. Other than this grid level, all of the grid levels are solved in SENSEI with different
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order boundary conditions and the drag coefficient is calculated for those settings. Fig. 8a shows that the drag on the
dividing plate is much lower when a first-order boundary condition is used. The boundary condition order has a larger
effect on the integrated drag than it did for 2DZP because, in this case, the plate intersects a stagnation temperature and
pressure inflow boundary on its leading edge. Because the plate begins at the inflow boundary, errors here will affect the
entire plate downstream (not just the end as in 2DZP). Because the inflow boundary affects the entire plate, it will have a
larger effect on the integrated quantities of interest (e.g., drag). While it appears that the results with the first-order
boundary conditions will eventually converge to the same solution as the other cases, it will likely require a much finer
grid.

The turbulence eddy viscosity profile across the jet at station 2 looks largely the same between SENSEI, CFL3D
and FUN3D except at the center and edge of the jet, as shown in Fig. 9. The maximum µt in the shear layer for the
second-order SENSEI solution is lower than the maximum value in the mixed-order solution by 0.21%. Also similar
to the 2DZP case, at the edge of the shear layer the eddy viscosity seems to be sharper for the second-order solution
rather than more spread out like in the mixed-order solution. These differences are attributed to the fact that SENSEI is
solving the turbulence equations second-order accurate, because the mixed-order solution from SENSEI matches the
results from FUN3D and CFL3D much more closely (less than 0.001% difference in maximum µT ). Despite these
different values of µT , the velocity profiles at this station are nearly identical and the centerline velocity profile is very
close except directly downstream of the plate as shown in Fig. 10.

Fig. 7 2DCJ: Geometry and boundary conditions, reproduced from TMR website.∗∗

∗∗https://turbmodels.larc.nasa.gov/shear.html
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Fig. 8 Grid convergence of various quantities for the 2DCJ.

Table 2 2DCJ: Observed order of accuracy on the three finest grids.

SENSEI SENSEI
second-order mixed-order CFL3D FUN3D

Observed Order, CD 0.59 0.71 1.13 0.12
Observed Order, u/are f at station 1 3.16 negative 0.96 oscillatory
Observed Order, u/are f at station 2 0.99 1.05 1.35 0.96
Observed Order, u/are f at station 3 0.93 negative 0.29 0.94
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Fig. 9 2DCJ: Profile of turbulent eddy viscosity at station 2, highlighting the differences between the codes.
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Fig. 10 2DCJ: Various velocity profiles. Note how similar all of these results are.

3. 2DB
The 2D bump case (2DB) has many quantities of interest including the coefficients of lift, pressure drag, viscous

drag, and total drag. The grid convergence properties of these values are shown in Fig 11 and the observed order of
accuracy is shown in Table 3. The order of boundary conditions has an effect (0.3% to 5% difference) on the lift on the
bump, but it does not have an impact on the drag (less than 0.1% difference). This is likely because the order of the
boundary condition seems to have a significant effect on the pressure but a lesser effect on the turbulence equation and
velocity gradients at the wall. This also explains why the boundary condition order does not make a noticeable difference
in the drag on the flat plate because there is only viscous drag in that case. There are no discernible differences between
the Cf or Cp distributions for the three codes on the finest grids except for the Cf peaks at the beginning and end of
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bump, so they are not presented here.
Similar to the other cases, the order of the turbulence model does not have a significant effect on the integrated

quantities of interest. However, changing the spatial discretization order does show differences in the width and
magnitude of the turbulent region. Fig. 12, shows the normalized eddy viscosity through the boundary layer at x = 0.75,
which is the top of the bump. Similar to the flat plate and coflow problems, the edge of the turbulent region in the
second-order solution appears to be sharper compared to the mixed-order solution. At this station along the bump, the
second-order eddy viscosity peak is approximately 0.5% larger than the mixed-order peak. Fig. 13 shows the maximum
value of the the eddy viscosity in the boundary layer along the bump for CFL3D and SENSEI with different orders. This
figure shows that for the majority of the problem the maximum eddy viscosity is similar with mixed- and second-order
solutions, however, near the top of the bump the second-order eddy viscosity is higher. Again, when SENSEI runs with
mixed-order spatial discretizations, the results match very well with CFL3D.
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Fig. 11 2DB: Grid convergence of various quantities.
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Table 3 2DB: Observed order of accuracy on the three finest grids.

SENSEI SENSEI
second-order mixed-order CFL3D FUN3D

Observed Order, CL 3.66 4.65 0.99 1.44
Observed Order, CD 2.14 2.83 2.37 oscillatory
Observed Order, CD,p 2.95 2.89 2.87 2.61
Observed Order, CD,v 0.54 oscillatory 0.89 0.64

µ
t
/µ

ref

y

0 20 40 60 80 100
0.05

0.055

0.06

0.065

CFL3D

FUN3D
SENSEI 2nd­order
SENSEI mixed­order

Fig. 12 2DB: Turbulent eddy viscosity through
boundary layer at x = 0.75.
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4. 2DANW
The 2D airfoil near wake case (2DANW) is flow over a DSMA661 (model A) airfoil. The grid convergence for

the lift, pressure drag, viscous drag, and total drag are shown in Fig 14 and the observed order of accuracy is shown
in Table 4. Again, the discretization order of the turbulence equation only has a slight effect on the solution on the
finer grids. There is a difference of only 0.06% in the lift on the finest grid level between the second-order and
mixed-order solutions. It should also be noted that when the same discretization is used as CFL3D (mixed-order) the lift
is very similar. Unlike the 2DB, the boundary condition order has effectively no impact on the quantities of interest
for this problem with less than 0.005% difference in lift on all grid levels. This is likely because there are no other
boundaries anywhere near the airfoil for this case (ignoring the interblock boundaries at the trailing edge). Because the
boundary conditions have very little effect on the solution, the rest of the results for this case will be presented using the
second-order boundary condition.

The pressure and and skin friction distributions across the surface of the airfoil are presented in Fig. 15. There is no
discernible difference between all of the solutions except in certain regions where the distribution is not smooth. This
nonsmoothness in the pressure and skin friction distributions has been attributed to the nonsmooth nature of the airfoil
geometry especially near the leading edge. Fig. 15a contains an insert focusing on one of these oscillations to show the
differences in skin friction between the three codes. Another unique feature of this problem is the wake. The velocity
profile across the wake is measured at several stations downstream of the airfoil and are plotted in Fig. 16. The wake
deficit at the various stations match very well, with SENSEI matching the CFL3D results within 1.4%.
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Fig. 14 2DANW: Grid convergence of various quantities.

Table 4 2DANW: Observed order of accuracy on the three finest grids.

SENSEI SENSEI
second-order mixed-order CFL3D FUN3D

Observed Order, CL 0.81 0.88 0.83 0.83
Observed Order, CD 2.56 2.64 2.49 2.63
Observed Order, CD, p 2.72 2.74 2.72 2.91
Observed Order, CD, v 1.80 1.86 1.62 negative
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Fig. 15 2DANW: Grid convergence of various quantities.
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Fig. 16 u-velocity at different stations across the wake.

VII. Conclusions & Future Work
This paper has presented the work done in SENSEI to implement and verify the turbulence models and improve

the rest of the code base. As part of this development, we began to adopt many object-oriented principles for the new
capabilities as well as refactoring some existing capabilities to fit this paradigm. Implementing code in an object-oriented
manner increases the modularity and encapsulation of the code and it can reduce the difficulty and time required to add
new capabilities through polymorphism. The new object oriented paradigm was extended to several portions of the
code base including the linear system and boundary conditions, which have benefited greatly from this programming
style. The governing equations were nondimensionalized resulting in an eight order of magnitude reduction in the LHS
condition number. This reduction in the condition number of the LHS allows much more accurate solves of the linear
system and allows much higher CFL numbers to be run stably. The hand-coded residual Jacobian was checked using
finite differences to ensure that it was implemented correctly.
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We also outlined our implementation of the SA-neg turbulence model in SENSEI and the turbulence modeling
framework as a whole. Verification was performed using four 2D cases from the NASA Langley Turbulence Modeling
Resource website: the zero pressure gradient flat plate, the coflowing jet, the bump-in-channel, and the airfoil near-wake
cases. These cases were run in SENSEI, and the results were compared with results from CFL3D and FUN3D. All of
the results seemed to be converging to the same answers as the published results for FUN3D and CFL3D, which have
been rigorously verified. Matching the other codes, gives some amount of confidence that SENSEI’s implementation of
the SA-neg model is correct.

However, while presenting the results for these cases, some differences were highlighted. The most significant of
these differences were attributed to using different-order spatial discretizations of the turbulence equations and using
different-order boundary conditions. The TMR results for FUN3D and CFL3D both use a first-order discretization of
the SA equation while SENSEI has the ability to run both the mean flow and turbulence equations with either mixed- or
second-order discretizations. It was noted that for all of the cases, running fully second-order as opposed to mixed-order
did have a slight effect on the eddy viscosity. When a second-order spatial discretization of the turbulence equation was
used, the edge of the turbulent region was more sharp compared to the mixed-order solution. This was attributed to less
numerical dissipation smearing out the turbulence working variable at the edge of the turbulent region. It was also noted
that the maximum value of the second-order eddy viscosity was different than it was in the mixed-order solutions for
some cases such as the coflowing jet and airfoil. However, these small differences in eddy viscosity did not have much
of an effect on the mean flow properties or the viscous drag except on the coarsest meshes.

The order of the boundary conditions also had a significant effect on the final solution for most of the problems.
When the inflow or outflow boundaries were close to or intersected a wall, like the flat plate and coflowing jet cases, the
boundary condition order affected the local skin friction in a significant manner. This is more pronounced when the
boundary is at the leading edge of the wall like in the coflowing jet problem, where the low-order boundary condition
affects the skin friction along the entire plate and thus the integrated drag coefficient. When the wall intersects an
outflow boundary, like in the flat plate case, the effect of the first-order boundary condition is more localized and thus
does not significantly affect the integrated drag. Thus, for problems where walls of interest intersect inflow or outflow
boundaries, it is more important to use higher-order boundary conditions. When the other boundaries were farther
away the body of interest, like the bump case, the order of the boundary conditions had only a slight impact on the skin
friction, but a larger impact on the pressure distribution. Finally, when the boundaries were very far (500 body lengths)
away from the body, as in the airfoil case, the order of the boundary conditions had negligible effect. If SENSEI is
run using a mixed-order spatial discretization, similar to CFL3D, then the results between CFL3D and SENSEI match
extremely well.

In the future, we hope to extend this work to other turbulence models and higher dimensional problems. Because of
the turbulence framework that has been implemented, future developers can easily add any eddy viscosity turbulence
model. Future studies should continue to explore the differences between the solutions using different boundary
conditions. These boundary condition differences include not only the order of the boundary conditions but also the
specific implementations (strong versus weak, what variables are extrapolated to the outer state, etc). Another aspect of
the boundary conditions that could be considered is performing the boundary extrapolations in physical space rather
than computational space. It would also be interesting to continue examining the effect of the spatial discretization order
on the final solution in more detail and with more complex problems, for SA as well as other turbulence models. For
these studies, it would be important to look at the effect of the discretization order on the turbulence variables as well as
the effect on the mean flow and on engineering quantities of interest such as lift and drag.

Appendix A

A. Favre-Averaged Navier-Stokes Equations
The Favre-averaged Navier-Stokes equations (FANS) describe the motion of a compressible, turbulent fluid and are a

statement of conservation of mass, momentum, and energy [7]. To derive the FANS, the variables in the Navier-Stokes
equations (NS) are decomposed into mean and fluctuating parts. The mean is calculated using a density-weighted
average in time, as opposed to Reynolds averaging, which does not use density-weighting. After performing the Favre
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averaging, the FANS equations can be written as
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ũi ũi
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ũi

(
t̄i j − ρu′′i u′′j

)]
.

(22)

The extra terms that appear compared to the NS equations are correlations between instantaneous fluctuating quantities.
If these correlations are known, the FANS equations can be solved exactly. Most often, these correlation terms are not
known and must instead be modeled. Once these terms are modeled, the system is closed with an equation of state. In
this work, the system is closed using the perfect gas assumption

p̃ = ρ̄RT̃ . (23)

To simplify the notation in Eq. 22, the following definitions are made. First, the Reynolds stress tensor, τi j , may be
defined as

ρ̄τi j ≡ −ρu′′i u′′j . (24)

Next, the kinetic energy per unit volume is defined as

ρ̄k ≡
1
2
ρu′′i u′′i . (25)

Finally, the turbulent transport of heat may be defined as

qTj ≡ ρu′′j h′′ . (26)

With the definitions given in Eqs. 24 – 26, the FANS equations can be rewritten as
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(27)

where the total energy, et , and total enthalpy, ht , are given as

et = ẽ +
1
2

ũi ũi + k, ht = h̃ +
1
2

ũi ũi + k, (28)

and k is the turbulent kinetic energy.

B. Compressible Flow Closure Approximations
In the present form, Eq. 27 cannot be solved; all of the correlation terms must be modeled in some manner. The

following compressible flow closure approximations are made to model the Reynolds stress tensor, turbulent heat flux,
and the molecular diffusion and transport of turbulence [7].
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1. Reynolds-Stress Tensor
The Boussinesq approximation is used to model the Reynolds stress tensor. The Boussinesq approximation states

that the Reynolds stress is directly proportional to the strain rate of the mean flow through the turbulent eddy viscosity,
µT . The Reynolds stress tensor is given by

ρ̄τi j = 2µT
(
Si j −

1
3
∂ũk
∂xk

δi j

)
−

2
3
ρ̄kδi j, (29)

where Si j is the mean strain rate,

Si j =
1
2

(
∂ũi
∂xj
+
∂ũ j

∂xi

)
. (30)

2. Turbulent Heat-Flux
Turbulent heat flux is modeled using a Reynolds analogy where the turbulent heat flux is assumed to be proportional

to the mean temperature gradients

qTj = −
µTCp

PrT

∂T̃
∂xj

, (31)

where PrT is the turbulent Prandtl number, Cp is the specific heat at constant pressure, and µT is the turbulent eddy
viscosity.

3. Molecular Diffusion and Turbulent Transport
The molecular diffusion and turbulent transport terms are often lumped together and are modeled as

tjiu
′′

i − ρu′′j
1
2

u′′i u′′i =
(
µ +

µT
σk

)
∂k
∂xj

, (32)

where σk is a constant, which depends upon how the turbulent kinetic energy is modeled. In some turbulence models,
this lumped term may take a slightly different form. In other turbulence models, such as the Spalart-Allmaras model,
the molecular diffusion and turbulent transport may not even be modeled; in such cases, this term may be neglected.

Appendix B

Listing 1 Outline of turb_model_t

type, abstract :: turb_model_t

! Number of turbulence variables
integer :: n_turb

! Number of miscellaneous variables
integer :: n_misc

contains

public

! Allocates as sets the turb_init aray
procedure(set_init_i), nopass, deferred :: set_turb_init

! Turbulent kinetic energy (TKE) for the model
procedure(tke_i), nopass, deferred :: calc_tke
procedure(scalar_jac_i), nopass, deferred :: calc_tke_jacobian
procedure(scalar_mean_jac_i), nopass, deferred :: calc_tke_mean_jacobian

! Turbulent eddy viscosity (mut) for the model
procedure(mut_i), nopass, deferred :: calc_mut
procedure(scalar_jac_i), nopass, deferred :: calc_mut_jacobian
procedure(scalar_mean_jac_i), nopass, deferred :: calc_mut_mean_jacobian

! Molecular diffusion / turbulent transport (MDTT) for the model
procedure(mdtt_i), nopass, deferred :: calc_mdtt
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procedure(matrix_jac_i), nopass, deferred :: calc_mdtt_jacobian
procedure(matrix_mean_jac_i), nopass, deferred :: calc_mdtt_mean_jacobian

! Effective viscosity (mueff) for the turbulent viscous flux
procedure(mueff_i), nopass, deferred :: calc_mueff
procedure(vector_jac_i), nopass, deferred :: calc_mueff_jacobian

! Production term for the model
procedure(src_terms_i), nopass, deferred :: calc_production
procedure(vector_jac_i), nopass, deferred :: calc_production_jacobian

! Destruction term for the model
procedure(src_terms_i), nopass, deferred :: calc_destruction
procedure(vector_jac_i), nopass, deferred :: calc_destruction_jacobian

! Diffusion term for the model
procedure(src_terms_i), nopass, deferred :: calc_diffusion
procedure(stencil_jac_i), nopass, deferred :: calc_diffusion_jacobian

! Source terms for the model
procedure(turb_source_i), nopass, deferred :: calc_source
procedure(stencil_jac_i), nopass, deferred :: calc_source_jacobian

! Computes gradients of the turbulence variables
procedure , :: calc_turb_grad

! Various terms of interest for the model
procedure(misc_terms_i), nopass, deferred :: turb_misc
procedure(misc_names_i), nopass, deferred :: turb_misc_name

! Tecplot output
procedure , :: setup_tecplot_turb
procedure , :: write_tecplot_turb

! Reynolds stress at a given cell
procedure :: reynolds_stress

! Converts turbulence variables to and from dimensional form
procedure(dimen_i), nopass, deferred :: dimen_to_nondimen
procedure(dimen_i), nopass, deferred :: nondimen_to_dimen

! Deallocates the turbulence model
procedure :: destroy

end type turb_model_t
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