85 research outputs found

    Expression analysis onto microarrays of randomly selected cDNA clones highlights HOXB13 as a marker of human prostate cancer

    Get PDF
    In a strategy aimed at identifying novel markers of human prostate cancer, we performed expression analysis using microarrays of clones randomly selected from a cDNA library prepared from the LNCaP prostate cancer cell line. Comparisons of expression profiles in primary human prostate cancer, adjacent normal prostate tissue, and a selection of other (nonprostate) normal human tissues, led to the identification of a set of clones that were judged as the best candidate markers of normal and/or malignant prostate tissue. DNA sequencing of the selected clones revealed that they included 10 genes that had previously been established as prostate markers: NKX3.1, KLK2, KLK3 (PSA), FOLH1 (PSMA), STEAP2, PSGR, PRAC, RDH11, Prostein and FASN. Following analysis of the expression patterns of all selected and sequenced genes through interrogation of SAGE databases, a further three genes from our clone set, HOXB13, SPON2 and NCAM2, emerged as additional candidate markers of human prostate cancer. Quantitative RT–PCR demonstrated the specificity of expression of HOXB13 in prostate tissue and revealed its ubiquitous expression in a series of 37 primary prostate cancers and 20 normal prostates. These results demonstrate the utility of this expression-microarray approach in hunting for new markers of individual human cancer types

    Characterisation of prostate cancer lesions in heterozygous Men1 mutant mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations of the <it>MEN1 </it>gene predispose to multiple endocrine neoplasia type 1 (MEN1) syndrome. Our group and others have shown that <it>Men1 </it>disruption in mice recapitulates MEN1 pathology. Intriguingly, rare lesions in hormone-dependent tissues, such as prostate and mammary glands, were also observed in the <it>Men1 </it>mutant mice.</p> <p>Methods</p> <p>To study the occurrence of prostate lesions, we followed a male mouse cohort of 47 <it>Men1</it><sup>+/- </sup>mice and 23 age-matched control littermates, starting at 18 months of age, and analysed the prostate glands from the cohort.</p> <p>Results</p> <p>Six <it>Men1</it><sup>+/- </sup>mice (12.8%) developed prostate cancer, including two adenocarcinomas and four <it>in situ </it>carcinomas, while none of the control mice developed cancerous lesions. The expression of menin encoded by the <it>Men1 </it>gene was found to be drastically reduced in all carcinomas, and partial LOH of the wild-type <it>Men1 </it>allele was detected in three of the five analysed lesions. Using immunostaining for the androgen receptor and p63, a basal epithelial cell marker, we demonstrated that the menin-negative prostate cancer cells did not display p63 expression and that the androgen receptor was expressed but more heterogeneous in these lesions. Furthermore, our data showed that the expression of the cyclin-dependent kinase inhibitor CDKN1B (p27), a <it>Men1 </it>target gene known to be inactivated during prostate cell tumorigenesis, was notably decreased in the prostate cancers that developed in the mutant mice.</p> <p>Conclusion</p> <p>Our work suggests the possible involvement of <it>Men1 </it>inactivation in the tumorigenesis of the prostate gland.</p

    Advances in genetics: widening our understanding of prostate cancer

    Get PDF
    Prostate cancer is a leading cause of cancer-related death in Western men. Our understanding of the genetic alterations associated with disease predisposition, development, progression, and therapy response is rapidly improving, at least in part, owing to the development of next-generation sequencing technologies. Large advances have been made in our understanding of the genetics of prostate cancer through the application of whole-exome sequencing, and this review summarises recent advances in this field and discusses how exome sequencing could be used clinically to promote personalised medicine for prostate cancer patients.</ns4:p

    Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.)

    Get PDF
    A transcript map has been constructed by the development and integration of genic molecular markers (GMMs) including single nucleotide polymorphism (SNP), genic microsatellite or simple sequence repeat (SSR) and intron spanning region (ISR)-based markers, on an inter-specific mapping population of chickpea, the third food legume crop of the world and the first food legume crop of India. For SNP discovery through allele re-sequencing, primer pairs were designed for 688 genes/expressed sequence tags (ESTs) of chickpea and 657 genes/ESTs of closely related species of chickpea. High-quality sequence data obtained for 220 candidate genic regions on 2–20 genotypes representing 9 Cicer species provided 1,893 SNPs with an average frequency of 1/35.83 bp and 0.34 PIC (polymorphism information content) value. On an average 2.9 haplotypes were present in 220 candidate genic regions with an average haplotype diversity of 0.6326. SNP2CAPS analysis of 220 sequence alignments, as mentioned above, provided a total of 192 CAPS candidates. Experimental analysis of these 192 CAPS candidates together with 87 CAPS candidates identified earlier through in silico mining of ESTs provided scorable amplification in 173 (62.01%) cases of which predicted assays were validated in 143 (82.66%) cases (CGMM). Alignments of chickpea unigenes with Medicago truncatula genome were used to develop 121 intron spanning region (CISR) markers of which 87 yielded scorable products. In addition, optimization of 77 EST-derived SSR (ICCeM) markers provided 51 scorable markers. Screening of easily assayable 281 markers including 143 CGMMs, 87 CISRs and 51 ICCeMs on 5 parental genotypes of three mapping populations identified 104 polymorphic markers including 90 markers on the inter-specific mapping population. Sixty-two of these GMMs together with 218 earlier published markers (including 64 GMM loci) and 20 other unpublished markers could be integrated into this genetic map. A genetic map developed here, therefore, has a total of 300 loci including 126 GMM loci and spans 766.56 cM, with an average inter-marker distance of 2.55 cM. In summary, this is the first report on the development of large-scale genic markers including development of easily assayable markers and a transcript map of chickpea. These resources should be useful not only for genome analysis and genetics and breeding applications of chickpea, but also for comparative legume genomics

    Integrated physical, genetic and genome map of chickpea (Cicer arietinum L.)

    Get PDF
    Physical map of chickpea was developed for the reference chickpea genotype (ICC 4958) using bacterial artificial chromosome (BAC) libraries targeting 71,094 clones (~12× coverage). High information content fingerprinting (HICF) of these clones gave high-quality fingerprinting data for 67,483 clones, and 1,174 contigs comprising 46,112 clones and 3,256 singletons were defined. In brief, 574 Mb genome size was assembled in 1,174 contigs with an average of 0.49 Mb per contig and 3,256 singletons represent 407 Mb genome. The physical map was linked with two genetic maps with the help of 245 BAC-end sequence (BES)-derived simple sequence repeat (SSR) markers. This allowed locating some of the BACs in the vicinity of some important quantitative trait loci (QTLs) for drought tolerance and reistance to Fusarium wilt and Ascochyta blight. In addition, fingerprinted contig (FPC) assembly was also integrated with the draft genome sequence of chickpea. As a result, ~965 BACs including 163 minimum tilling path (MTP) clones could be mapped on eight pseudo-molecules of chickpea forming 491 hypothetical contigs representing 54,013,992 bp (~54 Mb) of the draft genome. Comprehensive analysis of markers in abiotic and biotic stress tolerance QTL regions led to identification of 654, 306 and 23 genes in drought tolerance “QTL-hotspot” region, Ascochyta blight resistance QTL region and Fusarium wilt resistance QTL region, respectively. Integrated physical, genetic and genome map should provide a foundation for cloning and isolation of QTLs/genes for molecular dissection of traits as well as markers for molecular breeding for chickpea improvement

    Predictive value of routine hematological and biochemical parameters on 30-day fatality in acute stroke

    No full text
    OBJECTIVE: This prospective study was planned to study the prognostic value of routine clinical, hematological and biochemical parameters, including platelet aggregation in patients of acute stroke, on fatality occurring during the first 30 days. MATERIAL AND METHODS: In this study 116 consecutive patients (77 males and 39 females) of stroke (within 72 hours of onset) were included. After clinical evaluation and neuroimaging, blood investigations, hemoglobin, total leukocyte count, platelet count, platelet aggregation, erythrocyte sedimentation rate (ESR), blood sugar, urea, creatinine, sodium, potassium, serum cholesterol, serum bilirubin, aspartate aminotransferase (SGOT), alanine aminotransferase (SGPT), albumin, and globulin estimations were performed. The patients were followed up for a maximum period of 30 days from the onset of stroke, and patients who expired were grouped as 'expired' and the rest as 'survivors'. Logistic regression analysis was carried out among the significant parameters to identify independent predictors of 30-day fatality. RESULTS: Univariate analysis demonstrated that among hematological parameters, high total leukocyte count and ESR, at admission, correlated significantly with an undesirable outcome during the initial 30 days. Among biochemical parameters, elevated urea, creatinine, serum transaminases (SGOT and SGPT) and globulin levels correlated significantly with death. Logistic regression analysis demonstrated that a low Glasgow Coma Scale (GCS) score along with biochemical parameters such as high serum creatinine, SGPT, ESR and total leukocyte count correlated with death. CONCLUSION: Impaired consciousness, high total leukocyte count, raised ESR, elevated creatinine and SGPT levels, estimated within 24 hours of hospitalization, are the most important indicators of 30-day mortality in patients with first-time ischemic stroke

    High-throughput SNP discovery and genotyping for constructing a saturated linkage map of chickpea (Cicer arietinum L.)

    No full text
    The present study reports the large-scale discovery of genome-wide single-nucleotide polymorphisms (SNPs) in chickpea, identified mainly through the next generation sequencing of two genotypes, i.e. Cicer arietinum ICC4958 and its wild progenitor C. reticulatum PI489777, parents of an inter-specific reference mapping population of chickpea. Development and validation of a high-throughput SNP genotyping assay based on Illumina's GoldenGate Genotyping Technology and its application in building a high-resolution genetic linkage map of chickpea is described for the first time. In this study, 1022 SNPs were identified, of which 768 high-confidence SNPs were selected for designing the custom Oligo Pool All (CpOPA-I) for genotyping. Of these, 697 SNPs could be successfully used for genotyping, demonstrating a high success rate of 90.75%. Genotyping data of the 697 SNPs were compiled along with those of 368 co-dominant markers mapped in an earlier study, and a saturated genetic linkage map of chickpea was constructed. One thousand and sixty-three markers were mapped onto eight linkage groups spanning 1808.7 cM (centiMorgans) with an average inter-marker distance of 1.70 cM, thereby representing one of the most advanced maps of chickpea. The map was used for the synteny analysis of chickpea, which revealed a higher degree of synteny with the phylogenetically close Medicago than with soybean. The first set of validated SNPs and map resources developed in this study will not only facilitate QTL mapping, genome-wide association analysis and comparative mapping in legumes but also help anchor scaffolds arising out of the whole-genome sequencing of chickpea

    Molecular genetics and breeding of grain legume crops for the Semi-Arid Tropics

    Get PDF
    Grain legumes are important crops for providing key components in the diets of resource-poor people of the semi-arid tropic (SAT) regions of the world. Although there are several grain legume crops grown in SAT, the present chapter deals with three important legumes i.e. groundnut or peanut (Arachis hypogaea), chickpea (Cicer arietinum) and pigeonpea (Cajanus cajan). Production of these legume crops are challenged by serious abiotic stresses e.g. drought, salinity as well as several fungal, viral and nematode diseases. To tackle these constraints through molecular breeding, some efforts have been initiated to develop genomic resources e.g. molecular markers, molecular genetic maps, expressed sequence tags (ESTs), macro-/micro- arrays, bacterial artificial chromosomes (BACs), etc. These genomic resources together with recently developed genetic and genomics strategies e.g. functional molecular markers, linkage-disequilibrium (LD) based association mapping, functional and comparative genomics offer the possibility of accelerating molecular breeding for abiotic and biotic stress tolerances in the legume crops. However, low level of polymorphism present in the cultivated genepools of these legume crops, imprecise phenotyping of the germplasm and the higher costs of development and application of genomic tools are critical factors in utilizing genomics in breeding of these legume crops
    corecore