1,484 research outputs found

    Free Energy for Protonation Reaction in Lithium-Ion Battery Cathode Materials

    Get PDF

    New insight into cataract formation -- enhanced stability through mutual attraction

    Get PDF
    Small-angle neutron scattering experiments and molecular dynamics simulations combined with an application of concepts from soft matter physics to complex protein mixtures provide new insight into the stability of eye lens protein mixtures. Exploring this colloid-protein analogy we demonstrate that weak attractions between unlike proteins help to maintain lens transparency in an extremely sensitive and non-monotonic manner. These results not only represent an important step towards a better understanding of protein condensation diseases such as cataract formation, but provide general guidelines for tuning the stability of colloid mixtures, a topic relevant for soft matter physics and industrial applications.Comment: 4 pages, 4 figures. Accepted for publication on Phys. Rev. Let

    Effect of Hydrostatic Compression on the Energy of the 14.4-kev Gamma Ray from Fe^(57) in Iron

    Get PDF
    The energy of the recoil-free fraction of they rays emitted by nuclei bound in solids1 has been found to be affected by temperature and by electronic configuration. The latter effect has been named the "isomeric" shift. Compression of a solid should influence the energy through both of these mechanisms. We have measured the effect of hydrostatic compression at 295°K on the energy hν of the recoil-free 14.4-kev γ rays emitted by 0.1-μsec Fe^(57) bound in metallic iron

    Passage-time statistics of superradiant light pulses from Bose-Einstein condensates

    Full text link
    We discuss the passage-time statistics of superradiant light pulses generated during the scattering of laser light from an elongated atomic Bose-Einstein condensate. Focusing on the early-stage of the phenomenon, we analyze the corresponding probability distributions and their scaling behaviour with respect to the threshold photon number and the coupling strength. With respect to these parameters, we find quantities which only vary significantly during the transition between the Kapitza Dirac and the Bragg regimes. A possible connection of the present observations to Brownian motion is also discussed.Comment: Close to the version published in J. Phys.

    The electron-phonon coupling strength at metal surfaces directly determined from the Helium atom scattering Debye-Waller factor

    Get PDF
    A new quantum-theoretical derivation of the elastic and inelastic scattering probability of He atoms from a metal surface, where the energy and momentum exchange with the phonon gas can only occur through the mediation of the surface free-electron density, shows that the Debye-Waller exponent is directly proportional to the electron-phonon mass coupling constant λ\lambda. The comparison between the values of λ\lambda extracted from existing data on the Debye-Waller factor for various metal surfaces and the λ\lambda values known from literature indicates a substantial agreement, which opens the possibility of directly extracting the electron-phonon coupling strength in quasi-2D conducting systems from the temperature or incident energy dependence of the elastic Helium atom scattering intensities.Comment: 14 pages, 2 figures, 1 tabl

    The Electron-Phonon Coupling Constant for Single-Layer Graphene on Metal Substrates Determined from He Atom Scattering

    Full text link
    Recent theory has demonstrated that the value of the electron-phonon coupling strength λ\lambda can be extracted directly from the thermal attenuation (Debye-Waller factor) of Helium atom scattering reflectivity. This theory is here extended to multivalley semimetal systems and applied to the case of graphene on different metal substrates and graphite. It is shown that λ\lambda rapidly increases for decreasing graphene-substrate binding strength. Two different calculational models are considered which produce qualitatively similar results for the dependence of λ\lambda on binding strength. These models predict, respectively, values of λHAS=0.89\lambda_{HAS} = 0.89 and 0.32 for a hypothetical flat free-standing single-layer graphene with cyclic boundary conditions. The method is suitable for analysis and characterization of not only the graphene overlayers considered here, but also other layered systems such as twisted graphene bilayers.Comment: 25 pages, 3 figures, 1 tabl
    corecore