594 research outputs found

    Topological Shocks in Burgers Turbulence

    Full text link
    The dynamics of the multi-dimensional randomly forced Burgers equation is studied in the limit of vanishing viscosity. It is shown both theoretically and numerically that the shocks have a universal global structure which is determined by the topology of the configuration space. This structure is shown to be particularly rigid for the case of periodic boundary conditions.Comment: 4 pages, 4 figures, RevTex4, published versio

    Turbulence attenuation by large neutrally buoyant particles

    Get PDF
    Turbulence modulation by inertial-range-size, neutrally-buoyant particles is investigated experimentally in a von K\'arm\'an flow. Increasing the particle volume fraction Φv\Phi_\mathrm{v}, maintaining constant impellers Reynolds number attenuates the fluid turbulence. The inertial-range energy transfer rate decreases as Φv2/3\propto\Phi_\mathrm{v}^{2/3}, suggesting that only particles located on a surface affect the flow. Small-scale turbulent properties, such as structure functions or acceleration distribution, are unchanged. Finally, measurements hint at the existence of a transition between two different regimes occurring when the average distance between large particles is of the order of the thickness of their boundary layers.Comment: 7 pages, 4 figure

    Universality of Velocity Gradients in Forced Burgers Turbulence

    Full text link
    It is demonstrated that Burgers turbulence subject to large-scale white-noise-in-time random forcing has a universal power-law tail with exponent -7/2 in the probability density function of negative velocity gradients, as predicted by E, Khanin, Mazel and Sinai (1997, Phys. Rev. Lett. 78, 1904). A particle and shock tracking numerical method gives about five decades of scaling. Using a Lagrangian approach, the -7/2 law is related to the shape of the unstable manifold associated to the global minimizer.Comment: 4 pages, 2 figures, RevTex4, published versio

    Dynamics and statistics of heavy particles in turbulent flows

    Get PDF
    We present the results of Direct Numerical Simulations (DNS) of turbulent flows seeded with millions of passive inertial particles. The maximum Taylor's Reynolds number is around 200. We consider particles much heavier than the carrier flow in the limit when the Stokes drag force dominates their dynamical evolution. We discuss both the transient and the stationary regimes. In the transient regime, we study the growt of inhomogeneities in the particle spatial distribution driven by the preferential concentration out of intense vortex filaments. In the stationary regime, we study the acceleration fluctuations as a function of the Stokes number in the range [0.16:3.3]. We also compare our results with those of pure fluid tracers (St=0) and we find a critical behavior of inertia for small Stokes values. Starting from the pure monodisperse statistics we also characterize polydisperse suspensions with a given mean Stokes.Comment: 13 pages, 10 figures, 2 table

    Clustering of passive impurities in MHD turbulence

    Full text link
    The transport of heavy, neutral or charged, point-like particles by incompressible, resistive magnetohydrodynamic (MHD) turbulence is investigated by means of high-resolution numerical simulations. The spatial distribution of such impurities is observed to display strong deviations from homogeneity, both at dissipative and inertial range scales. Neutral particles tend to cluster in the vicinity of coherent vortex sheets due to their viscous drag with the flow, leading to the simultaneous presence of very concentrated and almost empty regions. The signature of clustering is different for charged particles. These exhibit in addition to the drag the Lorentz-force. The regions of spatial inhomogeneities change due to attractive and repulsive vortex sheets. While small charges increase clustering, larger charges have a reverse effect.Comment: 9 pages, 13 figure

    Population dynamics at high Reynolds number

    Get PDF
    We study the statistical properties of population dynamics evolving in a realistic two-dimensional compressible turbulent velocity field. We show that the interplay between turbulent dynamics and population growth and saturation leads to quasi-localization and a remarkable reduction in the carrying capacity. The statistical properties of the population density are investigated and quantified via multifractal scaling analysis. We also investigate numerically the singular limit of negligibly small growth rates and delocalization of population ridges triggered by uniform advection.Comment: 5 pages, 5 figure

    Geometry and violent events in turbulent pair dispersion

    Full text link
    The statistics of Lagrangian pair dispersion in a homogeneous isotropic flow is investigated by means of direct numerical simulations. The focus is on deviations from Richardson eddy-diffusivity model and in particular on the strong fluctuations experienced by tracers. Evidence is obtained that the distribution of distances attains an almost self-similar regime characterized by a very weak intermittency. The timescale of convergence to this behavior is found to be given by the kinetic energy dissipation time measured at the scale of the initial separation. Conversely the velocity differences between tracers are displaying a strongly anomalous behavior whose scaling properties are very close to that of Lagrangian structure functions. These violent fluctuations are interpreted geometrically and are shown to be responsible for a long-term memory of the initial separation. Despite this strong intermittency, it is found that the mixed moment defined by the ratio between the cube of the longitudinal velocity difference and the distance attains a statistically stationary regime on very short timescales. These results are brought together to address the question of violent events in the distribution of distances. It is found that distances much larger than the average are reached by pairs that have always separated faster since the initial time. They contribute a stretched exponential behavior in the tail of the inter-tracer distance probability distribution. The tail approaches a pure exponential at large times, contradicting Richardson diffusive approach. At the same time, the distance distribution displays a time-dependent power-law behavior at very small values, which is interpreted in terms of fractal geometry. It is argued and demonstrated numerically that the exponent converges to one at large time, again in conflict with Richardson's distribution.Comment: 21 page
    corecore