908 research outputs found
CAN-HK : An a priori crustal model for the Canadian Shield
ACKNOWLEDGMENTS The United Kingdom component of the Hudson Bay Lithospheric Experiment (HuBLE) was supported by the Natural Environment Research Council (NERC) Grant Number NE/F007337/1, with financial and logistical support from the Geological Survey of Canada (GSC), Canada-Nunavut Geoscience Office (CNGO), SEIS-UK (the seismic node of NERC), and the First Nations communities of Nunavut. J. Beauchesne and J. Kendall provided invaluable assistance in the field. I. D. B. was funded by the Leverhulme Trust and acknowledges support through Grant Number RPG-2013- 332. The authors thank three anonymous reviewers for their constructive comments.Peer reviewedPublisher PD
Seismic imaging of the Alaska Subduction Zone: implications for slab geometry and volcanism
Alaska has been a site of subduction and terrane accretion since the mid‐Jurassic. The area features abundant seismicity, active volcanism, rapid uplift, and broad intraplate deformation, all associated with subduction of the Pacific plate beneath North America. The juxtaposition of a slab edge with subducted, overthickened crust of the Yakutat terrane beneath central Alaska is associated with many enigmatic volcanic features. The causes of the Denali Volcanic Gap, a 400‐km‐long zone of volcanic quiescence west of the slab edge, are debated. Furthermore, the Wrangell Volcanic Field, southeast of the volcanic gap, also has an unexplained relationship with subduction. To address these issues, we present a joint ambient noise, earthquake‐based surface wave, and P‐S receiver function tomography model of Alaska, along with a teleseismic S wave velocity model. We compare the crust and mantle structure between the volcanic and nonvolcanic regions, across the eastern edge of the slab and between models. Low crustal velocities correspond to sedimentary basins, and several terrane boundaries are marked by changes in Moho depth. The continental lithosphere directly beneath the Denali Volcanic Gap is thicker than in the adjacent volcanic region. We suggest that shallow subduction here has cooled the mantle wedge, allowing the formation of thick lithosphere by the prevention of hot asthenosphere from reaching depths where it can interact with fluids released from the slab and promote volcanism. There is no evidence for subducted material east of the edge of the Yakutat terrane, implying the Wrangell Volcanic Field formed directly above a slab edge
The case for evidence-based policy to support stress-resilient cropping systems
Research and the dissemination of evidence-based guidelines for best practice in crop production are fundamental for the protection of our crop yields against biotic and abiotic threats, and for meeting ambitious food production targets by 2050. The advances in knowledge required for sustaining crop productivity targets will be gained through three research tracks: (1) basic strategic research in the field, for example, crop breeding, agronomy, and advanced phenotyping; (2) translational research involving the application of advances in fundamental science; and (3) pure fundamental research to fuel future translational research. We propose that policy and funding structures need to be improved to facilitate and encourage more interactions between scientists involved in all three research tracks, and also between researchers and farmers, to improve the effectiveness of delivering improvements in crop stress resilience. History illustrates that it is challenging for public researchers to “stretch across” all of these research tracks, with effective farm-level solutions being more likely when end-users and industry are directly engaged in the research pipeline. As research proceeds from fundamental through to applied research, the demand for experimental rigor and a wider understanding of appropriate methods and outcomes is paramount, that is, demonstrating value in yield at the field level requires the input of experienced practitioners from each research track. The development of evidence-based policies to support all funding structures and the engagement of producers with both the development of research, and with the findings of such research, will form an important capability in meeting food security targets. This commentary, concentrating on the development of policies to support research and its dissemination, is based on discussions held at the Stress Resilience Symposium organized by the Global Plant Council and Society of Experimental Biology in October 2015.Matthew Gilliham, Scott Chapman, Lisa Martin, Sarah Jose and Ruth Basto
Rapid detection of arsenic minerals using portable broadband NQR
The remote real-time detection of specific arsenic species would significantly benefit in minerals processing to mitigate the release of arsenic into aquatic environments and aid in selective mining. At present, there are no technologies available to detect arsenic minerals in bulk volumes outside of laboratories. Here we report on the first room-temperature broadband 75As nuclear quadrupole resonance (NQR) detection of common and abundant arsenic ores in the Earth crust using a large sample (0.78 L) volume prototype sensor. Broadband excitation aids in detection of natural minerals with low crystallinity. We briefly discuss how the proposed NQR detector could be employed in mining operations. Key Points Transformation of chemical analysis method to geophysical detection technologyFirst NQR ore characterization of selected arsenic minerals in bulk volumesBroadband NQR sensor to detect arsenic minerals with low crystallinit
AFRP20: New P-Wavespeed Model for the African Mantle Reveals Two Whole-Mantle Plumes Below East Africa and Neoproterozoic Modification of the Tanzania Craton
Africa’s Cenozoic tectonism is often attributed to mantle plumes, particularly below East Africa, but their morphology, number, location, and impact on the African lithosphere are debated. The broad slow wavespeed African Superplume, ubiquitous in large-scale tomographic models, originates below South Africa, reaching the surface somewhere below East Africa. However, whether the diverse East African mantle geochemistry is best reconciled with one heterogeneous upwelling, or current tomographic models lack the resolution to image multiple distinct plumes, remains enigmatic. S-wavespeed tomographic images of Africa are legion, but higher-frequency P-wavespeed whole-mantle models possessing complementary diagnostic capabilities are comparatively lacking. This hinders attempts to disentangle the effects of Cenozoic hotspot tectonism and Pan African (and older) tectonic events on the East African lithosphere. Here we develop a continental-scale P-wave tomographic model capable of resolving structure from upper-to-lower mantle depths using a recently-developed technique to extract absolute arrival-times from noisy, temporary African seismograph deployments. Shallow-mantle wavespeeds are δVP ≈–4% below Ethiopia, but less anomalous (δVP ≥–2%) below other volcanic provinces. The heterogeneous African Superplume reaches the upper mantle below the Kenyan plateau. Below Ethiopia/Afar we image a second sub-vertical slow wavespeed anomaly rooted near the core-mantle boundary outside the African LLVP, meaning multiple disparately sourced whole-mantle plumes may influence East African magmatism. In contrast to other African cratons, wavespeeds below Tanzania are only fast to 90–135km depth. When interpreted alongside Lower Eocene on-craton kimberlites, our results support pervasive metasomatic lithospheric modification caused by subduction during the Neoproterozoic Pan-African orogeny.A. B. and S. C. are funded by the Natural Environment Research Council (NERC) Grant number NE/R010862/1 from PI Cottaar in Cambridge. A. B. was previously funded by the NERC Doctoral Training Partnership: Science and Solutions for a Changing Planet - Grant number NE/L002515/1 at Imperial College. I. B is funded by Natural Environment Research Council Grant number NE/S014136/1
Atypical chemokine receptor 4 shapes activated B cell fate
Activated B cells can initially differentiate into three functionally distinct fates-early plasmablasts (PBs), germinal center (GC) B cells, or early memory B cells-by mechanisms that remain poorly understood. Here, we identify atypical chemokine receptor 4 (ACKR4), a decoy receptor that binds and degrades CCR7 ligands CCL19/CCL21, as a regulator of early activated B cell differentiation. By restricting initial access to splenic interfollicular zones (IFZs), ACKR4 limits the early proliferation of activated B cells, reducing the numbers available for subsequent differentiation. Consequently, ACKR4 deficiency enhanced early PB and GC B cell responses in a CCL19/CCL21-dependent and B cell-intrinsic manner. Conversely, aberrant localization of ACKR4-deficient activated B cells to the IFZ was associated with their preferential commitment to the early PB linage. Our results reveal a regulatory mechanism of B cell trafficking via an atypical chemokine receptor that shapes activated B cell fate
Seismic tomographic imaging of the Eastern Mediterranean Mantle: Implications for terminal-stage subduction, the uplift of Anatolia, and the development of the North Anatolian Fault
The Eastern Mediterranean captures the eastwest transition from active subduction of Earth'soldest oceanic lithosphere to continental collision, making it an ideal location to study terminalstagesubduction. Asthenospheric or subductionrelated processes are the main candidates for the region's ∼2kmuplift and Miocene volcanism; however, their relative importance is debated. To address these issues, wepresent new P and S wave relative arrivaltime tomographic models that reveal fast anomalies associatedwith an intact Aegean slab in the west, progressing to a fragmented, partially continental, Cyprean slabbelow central Anatolia. We resolve a gap between the Aegean and Cyprean slabs, and a horizontal tear in theCyprean slab below the Central Anatolian Volcanic Province. Below eastern Anatolia, the completelydetached “Bitlis” slab is characterized by fast wave speeds at ∼500 km depth. Assuming slab sinkingrates mirror ArabiaAnatolia convergence rates, the Bitlis slab's location indicates an Oligocene (∼26 Ma)breakoff. Results further reveal a strong velocity contrast across the North Anatolian Fault likelyrepresenting a 40–60 km decrease in lithospheric thickness from the Precambrian lithosphere north of thefault to a thinned Anatolian lithosphere in the south. Slow uppermostmantle wave speeds below activevolcanoes in eastern Anatolia, and ratios of P to S wave relative traveltimes, indicate a thin lithosphere andmelt contributions. Positive central and eastern Anatolian residual topography requires additional supportfrom hot/buoyant asthenosphere to maintain the 1–2 km elevation in addition to an almost absentlithospheric mantle. Smallscale fast velocity structures in the shallow mantle above the Bitlis slab maytherefore be drips of Anatolian lithospheric mantle
Body-wave tomographic imaging of the Turkana Depression: Implications for rift development and plume-lithosphere interactions
The Turkana Depression, a topographically-subdued, broadly-rifted zone between the elevated East African and Ethiopian plateaus, disrupts the N–S, fault-bounded rift basin morphology that characterizes most of the East African Rift. The unusual breadth of the Turkana Depression leaves unanswered questions about the initiation and evolution of rifting between the Main Ethiopian and Eastern rifts. Hypotheses explaining the unusually broad, low-lying area include superposed Mesozoic and Cenozoic rifting and a lack of mantle lithospheric thinning and dynamic support. To address these issues, we have carried out the first body-wave tomographic study of the Depression’s upper mantle. Seismically-derived temperatures at 100 km depth exceed petrological estimates, suggesting the presence of mantle melt, although not as voluminous as the Main Ethiopian Rift, contributes to velocity anomalies. A NW–SE-trending high wavespeed band in southern Ethiopia at urn:x-wiley:15252027:media:ggge22580:ggge22580-math-0001200 km depth is interpreted as refractory Proterozoic lithosphere which has likely influenced the localization of both Mesozoic and Cenozoic rifting. At urn:x-wiley:15252027:media:ggge22580:ggge22580-math-0002100 km depth below the central Depression, a single localized low wavespeed zone is lacking. Only in the northernmost Eastern Rift and southern Lake Turkana is there evidence for focused low wavespeeds resembling the Main Ethiopian Rift, that bifurcate below the Depression and broaden approaching southern Ethiopia further north. These low wavespeeds may be attributed to melt-intruded mantle lithosphere or ponded asthenospheric material below lithospheric thin-spots induced by the region's multiple rifting phases. Low wavespeeds persist to the mantle transition zone suggesting the Depression may not lack mantle dynamic support in comparison to the two plateaus
- …