3,899 research outputs found

    Balmer-Like Series for Baryon Resonances

    Full text link
    The pole positions of various baryon resonances have been found to reveal a well pronounced clustering, the so-called H"ohler cluster. In a previous work, the H"ohler clusters have been shown to be identical to Lorentz multiplets of the type (1/2+l', 1/2+l')*[(1/2,0)+(0,1/2)] with l' integer. Here we show that the cluster positions are well described by means of a Balmer-series like recursive mass formula.Comment: 5 pages LaTex, World Scientific style, two tables. A missing additive factor of +1 on the rhs of Eq. (2) has been inserted and thereby a misprint, not an error, correcte

    Vibration characteristics of 1/8-scale dynamic models of the space-shuttle solid-rocket boosters

    Get PDF
    Vibration tests and analyses of six 1/8 scale models of the space shuttle solid rocket boosters are reported. Natural vibration frequencies and mode shapes were obtained for these aluminum shell models having internal solid fuel configurations corresponding to launch, midburn (maximum dynamic pressure), and near endburn (burnout) flight conditions. Test results for longitudinal, torsional, bending, and shell vibration frequencies are compared with analytical predictions derived from thin shell theory and from finite element plate and beam theory. The lowest analytical longitudinal, torsional, bending, and shell vibration frequencies were within + or - 10 percent of experimental values. The effects of damping and asymmetric end skirts on natural vibration frequency were also considered. The analytical frequencies of an idealized full scale space shuttle solid rocket boosted structure are computed with and without internal pressure and are compared with the 1/8 scale model results

    Update on the ICUD-SIU consultation on multi-parametric magnetic resonance imaging in localised prostate cancer

    Get PDF
    Introduction: Prostate cancer (PCa) imaging is a rapidly evolving field. Dramatic improvements in prostate MRI during the last decade will probably change the accuracy of diagnosis. This chapter reviews recent current evidence about MRI diagnostic performance and impact on PCa management. Materials and methods: The International Consultation on Urological Diseases nominated a committee to review the literature on prostate MRI. A search of the PubMed database was conducted to identify articles focussed on MP-MRI detection and staging protocols, reporting and scoring systems, the role of MP-MRI in diagnosing PCa prior to biopsy, in active surveillance, in focal therapy and in detecting local recurrence after treatment. Results: Differences in opinion were reported in the use of the strength of magnets [1.5 Tesla (T) vs. 3T] and coils. More agreement was found regarding the choice of pulse sequences; diffusion-weighted MRI (DW-MRI), dynamic contrast-enhanced MRI (DCE MRI), and/or MR spectroscopy imaging (MRSI) are recommended in addition to conventional T2-weighted anatomical sequences. In 2015, the Prostate Imaging Reporting and Data System (PI-RADS version 2) was described to standardize image acquisition and interpretation. MP-MRI improves detection of clinically significant PCa (csPCa) in the repeat biopsy setting or before the confirmatory biopsy in patients considering active surveillance. It is useful to guide focal treatment and to detect local recurrences after treatment. Its role in biopsy-naive patients or during the course of active surveillance remains debated. Conclusion: MP-MRI is increasingly used to improve detection of csPCa and for the selection of a suitable therapeutic approach

    RXTE Studies of X-ray Spectral Variations with Accretion Rate in 4U 1915-05

    Full text link
    We present the results of detailed spectral studies of the ultra-compact low mass X-ray binary (LMXB) 4U 1915-05 carried out with the Rossi X-ray Timing Explorer (RXTE) during 1996. 4U 1915-05 is an X-ray burster (XRB) known to exhibit a ~199-day modulation in its 2--12 keV flux. Observations were performed with the PCA and HEXTE instruments on RXTE at roughly one-month intervals to sample this long-term period and study accretion rate-related spectral changes. We obtain good fits with a model consisting of a blackbody and an exponentially cut-off power law. The spectral parameters are strongly correlated with both the broad-band (2--50 keV) luminosity and the position in the color-color diagram, with the source moving from a low hard state to a high soft state as the accretion rate increases. The blackbody component appears to drive the spectral evolution. Our results are consistent with a geometry in which the soft component arises from an optically thick boundary layer and the hard component from an extended Comptonizing corona. Comparing our results with those of a similar study of the brighter source 4U 1820-30 (Bloser et al. 2000), we find that the two ultra-compact LMXBs occupy similar spectral states even though the transitions occur at very different total luminosities.Comment: 27 pages LaTeX, 8 figures, accepted to the Astrophysical Journa

    Mandated Benefits, Welfare, and Heterogeneous Firms

    Full text link
    The paper constructs an asymmetric information model to investigate the efficiency and equity cases for government mandated benefits. A mandate can improve workers' insurance, and may also redistribute in favor of more "deserving" workers. The risk is that it may also reduce output. The more diverse are free market contracts - separating the various worker types - the more likely it is that such output effects will on balance serve to reduce welfare. It is shown that adverse effects can be mitigated by restricting mandates to "large" firms. An alternative to a mandate is direct government provision. We demonstrate that direct government provision may be superior to mandates by virtue of preserving separations

    Complexity analysis of Klein-Gordon single-particle systems

    Full text link
    The Fisher-Shannon complexity is used to quantitatively estimate the contribution of relativistic effects to on the internal disorder of Klein-Gordon single-particle Coulomb systems which is manifest in the rich variety of three-dimensional geometries of its corresponding quantum-mechanical probability density. It is observed that, contrary to the non-relativistic case, the Fisher-Shannon complexity of these relativistic systems does depend on the potential strength (nuclear charge). This is numerically illustrated for pionic atoms. Moreover, its variation with the quantum numbers (n, l, m) is analysed in various ground and excited states. It is found that the relativistic effects enhance when n and/or l are decreasing.Comment: 4 pages, 3 figures, Accepted in EPL (Europhysics Letters
    • …
    corecore