107 research outputs found

    Functional analysis of novel KCNQ2 and KCNQ3 gene variants found in a large pedigree with benign familial neonatal convulsions (BFNC)

    Get PDF
    Benign familial neonatal convulsion (BFNC) is a rare autosomal dominant disorder caused by mutations in KCNQ2 and KCNQ3, two genes encoding for potassium channel subunits. A large family with nine members affected by BFNC is described in the present study. All affected members of this family carry a novel deletion/insertion mutation in the KCNQ2 gene (c.761_770del10insA), which determines a premature truncation of the protein. In addition, in the family of the proposita's father, a novel sequence variant (c.2687A>G) in KCNQ3 leading to the p.N821S amino acid change was detected. When heterologously expressed in Chinese hamster ovary cells, KCNQ2 subunits carrying the mutation failed to form functional potassium channels in homomeric configuration and did not affect channels formed by KCNQ2 and/or KCNQ3 subunits. On the other hand, homomeric and heteromeric potassium channels formed by KCNQ3 subunits carrying the p.N821S variant were indistinguishable from those formed by wild-type KCNQ3 subunits. Finally, the current density of the cells mimicking the double heterozygotic condition for both KCNQ2 and KCNQ3 alleles of the proband was decreased by approximately 25% when compared to cells expressing only wild-type alleles. Collectively, these results suggest that, in the family investigated, the KCNQ2 mutation is responsible for the BFNC phenotype, possibly because of haplo-insufficiency, whereas the KCNQ3 variant is functionally silent, a result compatible with its lack of segregation with the BFNC phenotyp

    The Cost of Economic and Racial Injustice in Postsecondary Education

    Get PDF
    In partnership with the Postsecondary Value Commission, we conducted a thought experiment on the costs of inequality in the US education system. Our simulation found that the US economy misses out on 956billionperyear,alongwithnumerousnonmonetarybenefits,asaresultofpostsecondaryattainmentgapsbyeconomicstatusandrace/ethnicity.TheCostofEconomicandRacialInjusticeinPostsecondaryEducationfindsthatclosingthesegapswouldrequireaninitialpublicinvestmentofatleast956 billion per year, along with numerous nonmonetary benefits, as a result of postsecondary attainment gaps by economic status and race/ethnicity. The Cost of Economic and Racial Injustice in Postsecondary Education finds that closing these gaps would require an initial public investment of at least 3.97 trillion, but the benefits would outweigh the costs over time. Equalizing educational attainment without increasing student debt for low-income adults could also boost GDP by a total of $764 billion annually

    Functional analysis of novel KCNQ2 and KCNQ3 gene variants found in a large pedigree with benign familial neonatal convulsions (BFNC)

    Get PDF
    Benign familial neonatal convulsion (BFNC) is a rare autosomal dominant disorder caused by mutations in KCNQ2 and KCNQ3, two genes encoding for potassium channel subunits. A large family with nine members affected by BFNC is described in the present study. All affected members of this family carry a novel deletion/insertion mutation in the KCNQ2 gene (c.761_770del10insA), which determines a premature truncation of the protein. In addition, in the family of the proposita's father, a novel sequence variant (c.2687A>G) in KCNQ3 leading to the p.N821S amino acid change was detected. When heterologously expressed in Chinese hamster ovary cells, KCNQ2 subunits carrying the mutation failed to form functional potassium channels in homomeric configuration and did not affect channels formed by KCNQ2 and/or KCNQ3 subunits. On the other hand, homomeric and heteromeric potassium channels formed by KCNQ3 subunits carrying the p.N821S variant were indistinguishable from those formed by wild-type KCNQ3 subunits. Finally, the current density of the cells mimicking the double heterozygotic condition for both KCNQ2 and KCNQ3 alleles of the proband was decreased by approximately 25% when compared to cells expressing only wild-type alleles. Collectively, these results suggest that, in the family investigated, the KCNQ2 mutation is responsible for the BFNC phenotype, possibly because of haplo-insufficiency, whereas the KCNQ3 variant is functionally silent, a result compatible with its lack of segregation with the BFNC phenotype

    Large community-acquired Legionnaires’ disease outbreak caused by Legionella pneumophila serogroup 1, Italy, July to August 2018

    Get PDF
    In July 2018, a large outbreak of Legionnaires\u2019 disease (LD) caused by Legionella pneumophila serogroup 1 (Lp1) occurred in Bresso, Italy. Fifty-two cases were diagnosed, including five deaths. We performed an epidemiological investigation and prepared a map of the places cases visited during the incubation period. All sites identified as potential sources were investigated and sampled. Association between heavy rainfall and LD cases was evaluated in a case-crossover study. We also performed a case\u2013control study and an aerosol dispersion investigation model. Lp1 was isolated from 22 of 598 analysed water samples; four clinical isolates were typed using monoclonal antibodies and sequence-based typing. Four Lp1 human strains were ST23, of which two were Philadelphia and two were France-Allentown subgroup. Lp1 ST23 France-Allentown was isolated only from a public fountain. In the case-crossover study, extreme precipitation 5\u20136 days before symptom onset was associated with increased LD risk. The aerosol dispersion model showed that the fountain matched the case distribution best. The case\u2013control study demonstrated a significant eightfold increase in risk for cases residing near the public fountain. The three studies and the matching of clinical and environmental Lp1 strains identified the fountain as the source responsible for the epidemic

    Synergistic interplay of Gβγ and phosphatidylinositol 4,5-bisphosphate dictates Kv7.4 channel activity.

    Get PDF
    Kv7.4 channels are key determinants of arterial contractility and cochlear mechanosensation that, like all Kv7 channels, have an obligatory requirement for phosphatidylinositol 4,5-bisphosphate (PIP2). βγ G proteins (Gβγ) have been identified as novel positive regulators of Kv7.4. The present study ascertained whether Gβγ increased Kv7.4 open probability through an increased sensitivity to PIP2. In HEK cells stably expressing Kv7.4, PIP2 or Gβγ increased open probability in a concentration dependent manner. Depleting PIP2 prevented any Gβγ-mediated stimulation whilst an array of Gβγ inhibitors prohibited any PIP2-induced current enhancement. A combination of PIP2 and Gβγ at sub-efficacious concentrations increased channel open probability considerably. The stimulatory effects of three Kv7.2-7.5 channel activators were also lost by PIP2 depletion or Gβγ inhibitors. This study alters substantially our understanding of the fundamental processes that dictate Kv7.4 activity, revealing a more complex and subtle paradigm where the reliance on local phosphoinositide is dictated by interaction with Gβγ
    corecore