54 research outputs found
Microglial cell-mediated anti-Candida activity: temperature, ions, protein kinase C as crucial elements.
An in vitro established microglial cell line, BV-2, constitutively exhibits high levels of anti-Candida activity. To elucidate the cascade of events leading to the accomplishment of such activity, we studied its dependence on temperature and ion availability. The role of protein kinases has also been studied by the specific inhibitors, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H7) and N-(2-guanidinoethyl)-5-isoquinoline sulfonamide hydrochloride (HA 1004). We found that (a) the BV-2 cell/Candida conjugate formation is a discrete step, temperature-, ion- and protein kinase-independent; (b) the phagocytic event, which is protein kinase-independent, is significantly impaired by temperature decrease and ion deprivation; (c) the fulfillment of anti-Candida effects is strictly dependent upon temperature, ion availability and functional protein kinase. Functional protein kinase C, but not other kinases, is required for the accomplishment of anti-Candida activity, which, in fact, is selectively abrogated by H7 but not HA. Furthermore, protein kinase C activators, such as 12-O-tetradecanoylphorbol 13-acetate (TPA) or 1-oleoyl-2-acetyl glycerol (OAG), consistently potentiate BV-2 cell-mediated anti-Candida activity, the phenomena being dose-dependent. These results indicate that the multistep events leading a microglial cell to express anti-Candida activity can be dissected and differentiated for biochemical and biological demands, the latest along the cascade being the most demanding steps
Identification of oxidation state +1 in a molecular uranium complex
The concept of oxidation state plays a fundamentally important role in defining the chemistry of the elements. In the f block of the periodic table, well-known oxidation states in compounds of the lanthanides include 0, +2, +3 and +4, and oxidation states for the actinides range from +7 to +2. Oxidation state +1 is conspicuous by its absence from the f-block elements. Here we show that the uranium(II) metallocene [U(η5-C5iPr5)2] and the uranium(III) metallocene [IU(η5-C5iPr5)2] can be reduced by potassium graphite in the presence of 2.2.2-cryptand to the uranium(I) metallocene [U(η5-C5iPr5)2]- (1) (C5iPr5 = pentaisopropylcyclopentadienyl) as the salt of [K(2.2.2-cryptand)]+. An X-ray crystallographic study revealed that 1 has a bent metallocene structure, and theoretical studies and magnetic measurements confirmed that the electronic ground state of uranium(I) adopts a 5f3(7s/6dz2)1(6dx2-y2/6dxy)1 configuration. The metal-ligand bonding in 1 consists of contributions from uranium 5f, 6d, and 7s orbitals, with the 6d orbitals engaging in weak but non-negligible covalent interactions. Identification of the oxidation state +1 for uranium expands the range of isolable oxidation states for the f-block elements and potentially signposts a synthetic route to this elusive species for other actinides and the lanthanides
Triply bonded pancake π-dimers stabilized by tetravalent actinides
Aromatic π-stacking is a weakly attractive, noncovalent interaction often found in biological macromolecules and synthetic supramolecular chemistry. The weak nondirectional nature of π-stacking can present challenges in the design of materials owing to their weak, nondirectional nature. However, when aromatic π-systems contain an unpaired electron, stronger attraction involving face-to-face π-orbital overlap is possible, resulting in covalent so-called “pancake” bonds. Two-electron, multicenter single pancake bonds are well known, whereas four-electron double pancake bonds are rare. Higher-order pancake bonds have been predicted, but experimental systems are unknown. Here, we show that six-electron triple pancake bonds can be synthesized by a 3-fold reduction of hexaazatrinaphthylene (HAN) and subsequent stacking of the [HAN]3– triradicals. Our analysis reveals a multicenter covalent triple pancake bond consisting of a σ-orbital and two equivalent π-orbitals. An electrostatic stabilizing role is established for the tetravalent thorium and uranium ions in these systems. We also show that the electronic absorption spectrum of the triple pancake bonds closely matches computational predictions, providing experimental verification of these unique interactions. The discovery of conductivity in thin films of triply bonded π-dimers presents new opportunities for the discovery of single-component molecular conductors and other spin-based molecular materials
Proteomic Analysis Reveals That Iron Availability Alters the Metabolic Status of the Pathogenic Fungus Paracoccidioides brasiliensis
Paracoccidioides brasiliensis is a thermodimorphic fungus and the causative agent of paracoccidioidomycosis (PCM). The ability of P. brasiliensis to uptake nutrients is fundamental for growth, but a reduction in the availability of iron and other nutrients is a host defense mechanism many pathogenic fungi must overcome. Thus, fungal mechanisms that scavenge iron from host may contribute to P. brasiliensis virulence. In order to better understand how P. brasiliensis adapts to iron starvation in the host we compared the two-dimensional (2D) gel protein profile of yeast cells during iron starvation to that of iron rich condition. Protein spots were selected for comparative analysis based on the protein staining intensity as determined by image analysis. A total of 1752 protein spots were selected for comparison, and a total of 274 out of the 1752 protein spots were determined to have changed significantly in abundance due to iron depletion. Ninety six of the 274 proteins were grouped into the following functional categories; energy, metabolism, cell rescue, virulence, cell cycle, protein synthesis, protein fate, transcription, cellular communication, and cell fate. A correlation between protein and transcript levels was also discovered using quantitative RT-PCR analysis from RNA obtained from P. brasiliensis under iron restricting conditions and from yeast cells isolated from infected mouse spleens. In addition, western blot analysis and enzyme activity assays validated the differential regulation of proteins identified by 2-D gel analysis. We observed an increase in glycolytic pathway protein regulation while tricarboxylic acid cycle, glyoxylate and methylcitrate cycles, and electron transport chain proteins decreased in abundance under iron limiting conditions. These data suggest a remodeling of P. brasiliensis metabolism by prioritizing iron independent pathways
Differential Host Susceptibility to Intracerebral Infections with Candida albicans and Cryptococcus neoformans
To investigate the immune defense mechanisms employed against fungi in the brain, mice were experimentally infected by intracerebral inoculation of Candida albicans or Cryptococcus neoformans. Parameters such as median survival time and numbers of yeast cells in the brains were assessed for naive and immunomodulated mice. We found that no mice survived either C. albicans or C. neoformans challenge at doses of .106 yeast cells per mouse. However, when the inoculum size was decreased ('105 yeast cells per mouse), C. albicans was no longer lethal (100%S survival), whereas 100 and 70%o of the mice still succumbed to challenge doses of 104 and 103 C. neoformans yeast cells, respectively. Pharmacological manipulation and transfer experiments revealed that the myelomonocytic compartment had a minor role against C. neoformans but was deeply involved in thecontrol of intracerebral C. albicans infection. By counting the number of yeast cells in the brains of naive and immunomodulated animals, we established that, unlike C. albicans, C. neoformans remained essentially in the brain, where massive colonization and damage occurred whether naive or immunomodulated defensemechanisms were employed by the host. Overall, these data suggest that the differential role of the myelomonocytic compartment, together with the diverse tropisms of the two fungi, can explain the different development and outcome of intracerebral C. albicans and C. neoformans infections
Pattern of cytokine gene expression in brains of mice protected by picolinic acid against lethal intracerebral infection with Candida albicans.
Recently, we demonstrated that intracerebral (i.c.) administration of picolinic acid (PLA) confers protection against a lethal local challenge with the opportunistic pathogen Candida albicans. By histopathological studies, we show here that mice receiving PLA treatment survive challenge and no evidence of fungal invasion is found within the brain compartment. In contrast, PLA-untreated mice succumb to infection within 7-10 days and show massive brain colonization with extensive granulomatous reaction. By PCR analysis, we show that, unlike naive brains, PLA-treated brains show transient activation of TNF alpha, IL-1 beta and IL-6 genes. C. albicans infection results in high levels of all cytokine transcripts, the phenomenon being long-lasting in PLA-untreated brains, while gradually declining in PLA-treated brains. The only exception is IL-1 beta, whose levels remain high at the latest time-points tested, also in PLA-treated brains. Finally, IL-1 alpha, constitutively detectable in naive brains, is slightly enhanced by C. albicans challenge, regardless of prior treatment. These findings, together with the knowledge that PLA is a potent co-stimulus for macrophages, suggest the involvement of cytokine circuits, likely of macrophage origin, in anti-Candida resistance established by PLA at the cerebral leve
Experimental model of intracerebral infection with Cryptococcus neoformans: roles of phagocytes and opsonization.
A murine model of intracerebral (i.c.) infection with Cryptococcus neoformans in which naive mice receiving an i.c. fungal inoculation developed a severe disease has been established. The effect was strictly dependent on the number of microorganisms injected and evolved as lethal meningoencephalitis. Murine susceptibility to i.c. infection with C. neoformans was enhanced by treatment with chloroquine and colchicine, agents known to greatly affect the host phagocytic compartment. Furthermore, the life spans of both naive and drug-treated mice were significantly augmented when opsonized fungi were injected. Therefore, phagocyte-mediated mechanisms are likely involved in local resistance to i.c. infection with C. neoformans. Further support for this conclusion was supplied by in vitro data showing that microglial cells were proficient anticryptococcal effectors, provided opsonized microorganisms were used
Experimental Model of Intracerebral Infection withCryptococcus neoformans: Roles of Phagocytesand Opsonization
A murine model of intracerebral (i.c.) infection with Cryptococcus neoformans in which naive mice receiving an i.c. fungal inoculation developed a severe disease has been established. The effect was strictly dependent on the number of microorganisms injected and evolved as lethal meningoencephalitis. Murine susceptibility to i.c.infection with C. neoformans was enhanced by treatment with chloroquine and colchicine, agents known to greatly affect the host phagocytic compartment. Furthermore, the life spans of both naive and drug-treated mice were significantly augmented when opsonized fungi were injected. Therefore, phagocyte-mediated mechanisms are likely involved in local resistance to i.c. infection with C. neoformans. Further support for this conclusion was supplied by in vitro data showing that microglial cells were proficient anticryptococcal effectors,provided opsonized microorganisms were used
Protective effect of picolinic acid on mice intracerebrally infected with lethal doses of Candida albicans.
We have studied the effects of picolinic acid (PLA), a product of tryptophan degradation, on mouse susceptibility to intracerebral infection with Candida albicans. We show that intraperitoneal administration of PLA significantly enhances the median survival time of mice inoculated with the lethal challenge. Furthermore, intracerebral administration of this agent induces a protective state against the local lethal infection, the phenomenon depending upon the administration schedule and doses of PLA employed. According to survival data, yeast growth in the brain as well as yeast colonization of the kidneys are drastically reduced in PLA-treated mice compared with those for untreated controls. Northern (RNA) blot analysis of brain tissues demonstrates that mRNA levels specific for tumor necrosis factor and interleukin 1 are augmented and induced, respectively, after inoculation of PLA. These results indicate that PLA has a protective effect likely involving elicitation of a cytokine response in vivo against fungal infections
- …