487 research outputs found

    High-field irreversible moment reorientation in the antiferromagnet Fe1.1_{1.1}Te

    Full text link
    Magnetization measurements have been performed on single-crystalline Fe1.1_{1.1}Te in pulsed magnetic fields Hc\mathbf{H}\perp\mathbf{c} up to 53 T and temperatures from 4.2 to 65 K. At T=4.2T=4.2 K, a non-reversible reorientation of the antiferromagnetic moments is observed at μ0HR=48\mu_0H_R=48 T as the pulsed field is on the rise. No anomaly is observed at HRH_R during the fall of the field and, as long as the temperature is unchanged, during both rises and falls of additional field pulses. The transition at HRH_R is reactivated if the sample is warmed up above the N\'{e}el temperature TN60T_N\simeq60 K and cooled down again. The magnetic field-temperature phase diagram of Fe1.1_{1.1}Te in Hc\mathbf{H}\perp\mathbf{c} is also investigated. We present the temperature dependence of HRH_R, as well as that of the antiferromagnetic-to-paramagnetic borderline HcH_c in temperatures above 40 K.Comment: 5 pages, 4 figure

    Production of negative parity baryons in the holographic Sakai-Sugimoto model

    Get PDF
    We extend our investigation of resonance production in the Sakai-Sugimoto model to the case of negative parity baryon resonances. Using holographic techniques we extract the generalized Dirac and Pauli baryon form factors as well as the helicity amplitudes for these baryonic states. Identifying the first negative parity resonance with the experimentally observed S_{11}(1535), we find reasonable agreement with experimental data from the JLab-CLAS collaboration. We also estimate the contribution of negative parity baryons to the proton structure functions.Comment: 1+30 pages, 8 figures. v3: typos corrected, references added, section 2 and 3 shortened, improved discussion of helicity amplitudes and comparison with experimental result

    Deep inelastic scattering for vector mesons in holographic D4-D8 model

    Full text link
    We study deep inelastic scattering for vector and axial vector mesons in the holographic D4-D8 brane model. We consider tree level contributions with one particle in the final hadronic state. We obtain the unpolarized structure functions F1 and F2 for the rho and a1 mesons for q2 < 80 GeV2 and 0.2 < x < 1. We find that the ratio F2/(2xF1) is approximately equal to one for some ranges of x and q2, satisfying the Callan-Gross relation.Comment: 15 pages, 4 tables, 8 figures. V2: we added explanations about Figures 3 and 4. Results unchange

    Generalized baryon form factors and proton structure functions in the Sakai-Sugimoto model

    Get PDF
    We investigate the production of positive parity baryon resonances in proton electromagnetic scattering within the Sakai-Sugimoto model. The latter is a string model for the non-perturbative regime of large NcN_c QCD. Using holographic techniques we calculate the generalized Dirac and Pauli form factors that describe resonance production. We use these results to estimate the contribution of resonance production to the proton structure functions. Interestingly, we find an approximate Callan-Gross relation for the structure functions in a regime of intermediate values of the Bjorken variable.Comment: v3: 38 pages, 25 figures. We added a new subsection in order to compare our results with experimental data. To appear in Nucl. Phys.

    On a Holographic Model for Confinement/Deconfinement

    Full text link
    We study the thermodynamics of the hard wall model, which consists in the introduction of an infrared cut-off in asymptotically AdS spaces. This is a toy model for confining backgrounds in the context of the gauge/gravity correspondence. We use holographic renormalization and reproduce the existence of a Hawking Page phase transition recently discussed by Herzog. We also show that the entropy jumps from N0N^0 to N2N^2, which reinforces the interpretation of this transition as the gravity dual of confinement/deconfinement. We also show that similar results hold for the phenomenologically motivated soft wall model, underlining the potential universality of our analysis.Comment: 14 pages. V2: We included a new section discussing the soft wall model and new references. V3: We clarified some points and updated the references. Results unchanged. Version published in PR
    corecore