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Abstract

We extend our investigation of resonance production in the Sakai-Sugimoto model to the
case of negative parity baryon resonances. Using holographic techniques we extract the
generalized Dirac and Pauli baryon form factors as well as the helicity amplitudes for these
baryonic states. Identifying the first negative parity resonance with the experimentally
observed S11(1535), we find reasonable agreement with experimental data from the JLab-
CLAS collaboration. We also estimate the contribution of negative parity baryons to the
proton structure functions.
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1. Introduction

In the past decade, gauge/gravity dualities inspired by the original Maldacena conjecture
[1] have been successfully applied to a wide range of problems in Quantum Chromodynam-
ics (QCD) as well as condensed matter theory. For QCD, two classes of models are of
particular interest: The phenomenological bottom-up approach based on five-dimensional
effective actions, and the more stringent top-down models based on compactifications of
ten-dimensional string theories1. A prominent and widely studied model of the latter class
clearly is the Sakai-Sugimoto model [10,11]. Its popularity can be attributed to its close
resemblance to large-Nc QCD, its computational simplicity and the fact that it provides a
geometric model that allows to study both the confinement/deconfinement transition (at
finite temperature) and chiral symmetry breaking in the same unified framework.

Holographic techniques have also emerged as a very fruitful complementary tool for study-
ing hadronic scattering in QCD where non-perturbative effects become important, namely
in the regime of low momentum transfer (

√
q2 lower than a few GeVs). In this paper we

investigate the production of negative parity baryon resonances in proton electromagnetic
scattering within the framework of the Sakai-Sugimoto model. This is a natural continuation
of our previous work on positive parity baryonic resonances [12]. Production of baryonic res-
onances is a very important and timely problem in hadronic physics for the following reasons:
i) Many baryonic resonances are excited nucleon states (N∗) and their structure is relevant
to understand the physics of quark confinement, ii) there is a huge experimental effort at
JLab [13] to extract the electromagnetic form factors and helicity amplitudes of baryonic
resonances in the regime where non-perturbative effects are dominant and perturbative QCD
predictions fail.

The paper is organized as follows: In section 2 we introduce the current matrix de-
composition for resonance production in proton electromagnetic scattering and present our
theoretical results for electromagnetic form factors and helicity amplitudes in the Breit frame.
Moreover, we study the contributions of resonance production to the proton structure func-
tions defined in Deep Inelastic Scattering (DIS). Here, we focus on the production of negative
parity baryonic resonances and their contributions, but for completeness, we also provide a
review of our previous results for positive parity baryon resonances. Section 3 contains a de-
tailed computation of the electromagnetic currents in the holographic Sakai-Sugimoto model
and a subsequent calculation of Dirac and Pauli form factors in the holographic setup. This
is done in a unified manner for both positive and negative parity baryon resonances. In sec-
tion 4 we present our numerical results for the generalized form factors, helicity amplitudes
and proton structure functions for the special case of negative parity baryon resonances and
compare them to experimental results. Section 5 offers some conclusions and an outlook.
Appendix A reviews different frames utilized in this article while appendix B gives technical
details on the limits relevant to the model at hand.

Previous holographic calculations on electromagnetic form factors of baryons can be found
in [14,15,16,17,18,20]. DIS structure functions from holography were first obtained in [21].
Further developments include the large x regime [22,23,24,25] as well as the small x regime

1Recommended reviews are [2,3,4,5] for the bottom-up approach and [6,7,8,9] for the top-down approach.
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[26,27,28,29,30,31]; DIS structure functions have also been calculated for strongly coupled
plasmas [32,33,34,35].

2. Form factors and helicity amplitudes

2.1. Dirac and Pauli form factors

We want to describe the electromagnetic interaction of a spin 1/2 baryon in the case where,
as a result of the interaction, a spin 1/2 baryonic resonance is produced. This baryonic
transition is described by an electromagnetic current evaluated between the initial and final
states. In our approach, we embed the electromagnetic current in a vectorial U(2) symmetry
present in any effective description of large-Nc QCD with chiral symmetry breaking. Then
we define the electromagnetic current as a linear combination of flavour currents:

J µ =
∑
a

caJ
µ,a
V c0 = 1/Nc , c3 = 1 , c1 = c2 = 0 . (2.1)

Now we evaluate the flavour currents Jµ,aV between the initial and final baryonic states.

Positive parity resonances

When the final baryonic state has positive parity we can expand the current matrix element
as

〈pX, BX, sX|Jµ,aV (0)|p,B, s〉 =
i

2(2π)3
(τa)IX3 I3

(
ηµν − qµqν

q2

)
ū(pX, sX)

[
γνF

D,a
BBX

(q2)

+ κBσνλq
λF P,a

BBX
(q2)

]
u(p, s) , (2.2)

where

qµ = (pX − p)µ , κB =
1

mB +mBX

,

(τ 0)IX3 I3 = δIX3 I3 , (τa)IX3 I3 = (σa)IX3 I3 a = (1, 2, 3) , (2.3)

and σa are the Pauli matrices. Here we are using the metric ηµν = diag(−,+,+,+) and we
adopt the following convention for spinors and gamma matrices:

u(p, s) =
1√
2E

(
fχs(~p)
~p·~σ
f
χs(~p)

)
, u(pX, sX) =

1√
2EX

(
fXχsX (~pX)
~pX ·~σ
fX

χsX (~pX)

)
,

γ0 = −i
(

1 0
0 −1

)
, γi = −i

(
0 σi

−σi 0

)
,

σµν =
i

2
[γµ, γν ] , γ5 = iγ0γ1γ2γ3 =

(
0 1
1 0

)
, (2.4)

where

f =
√
E +mB , fX =

√
EX +mBX . (2.5)
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In this article we are interested in the case where IX3 = I3 = 1/2. In this case the baryonic
states satisfy the relation [12] :

〈pX, BX, SX|~p,B, s〉 = δ3(~pX − ~p)δsXsδBXB . (2.6)

The spinors χs(~p) are defined as the eigenstates of the helicity equation of the initial
state:

~p · ~σχs(~p) = s|~p|χs(~p), s = (+,−) , (2.7)

Similary, the spinors χsX (~pX) are defined by the helicity equation for the final state:

~pX · ~σχsX (~pX) = sX|~pX|χsX (~pX) . (2.8)

Using the helicity equations we can obtain the following spinor relations:

ū(pX, sX)γ0u(p, s) = − i

2
√
EEX

(
f

fX

)[
f 2
X +

sXs|~pX||~p|
f 2

]
χ†sX (~pX)χs(~p) ,

ū(pX, sX)γiu(p, s) = − i

2
√
EEX

(
f

fX

)[
f 2
X

f 2
s|~p|+ sX|~pX|

]
χ†sX (~pX)σiχs(~p),

ū(pX, sX)σ0iqiu(p, s) = − i

2
√
EEX

(
f

fX

)[
f 2
X

f 2
s|~p| − sX|~pX|

]
qi χ

†
sX

(~pX)σiχs(~p) ,

ū(pX, sX)σi0q0u(p, s) =
iq0

2
√
EEX

(
f

fX

)[
f 2
X

f 2
s|~p| − sX|~pX|

]
χ†sX (~pX)σiχs(~p) ,

ū(pX, sX)σijqju(p, s) = − 1

2
√
EEX

(
f

fX

)[
f 2
X −

sXs|~pX||~p|
f 2

]
εijkqjχ

†
sX

(~pX)σkχs(~p) .

Finally, in order to get the standard relativistic normalizations

ū(p, s)u(p, s) = 2mB , 〈pX , BX , SX |p,B, s〉 = 2
√
EEX(2π)3δ3(~pX − ~p)δsXs , (2.9)

we need to transform the spinors and baryon states as

u(p, s)→ 1√
2E

u(p, s) , |p,B, s〉 → 1√
2E(2π)3/2

|p,B, s〉 . (2.10)

Using (2.1), (2.2) and (2.10) we obtain for I3 = IX3 = 1/2,

〈pX , BX , sX |J µ(0)|p,B, s〉 = i

(
ηµν − qµqν

q2

)
ū(pX , sX)

[
γνF

D
BBX

(q2)

+κBσνλq
λF P

BBX
(q2)

]
u(p, s) , (2.11)

where

FD
BBX

(q2) =
1

2

∑
a

caF
D,a
BBX

(q2) , F P
BBX

(q2) =
1

2

∑
a

caF
P,a
BBX

(q2) , (2.12)
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are the generalized Dirac and Pauli form factors that describe the production of positive
parity baryons.

Negative parity resonances

A good expansion for the flavor current matrix element in the case when the final baryonic
state has negative parity is given by

5〈pX, BX, sX|Jµ,aV (0)|p,B, s〉 =
i

2(2π)3
(τa)IX3 I3

(
ηµν − qµqν

q2

)
ū(pX, sX)

[
γνF̃

D,a
BBX

(q2)

+ κBσνλq
λF̃ P,a

BBX
(q2)

]
γ5u(p, s) . (2.13)

Alternatively, if we want to associate the chirality matrix γ5 with the final state (which is
the non-trivial state) we can write the current matrix element as

5〈pX, BX, sX|Jµ,aV (0)|p,B, s〉 =
i

2(2π)3
(τa)IX3 I3

(
ηµν − qµqν

q2

)
ū(pX, sX)γ5

×
[
− γνF̃D,a

BBX
(q2) + κBσνλq

λF̃ P,a
BBX

(q2)
]
u(p, s) . (2.14)

Transforming the spinors and states as (2.10), we get for I3 = IX3 = 1/2,

5〈pX , BX , sX |J µ(0)|p,B, s〉 = i

(
ηµν − qµqν

q2

)
ū(pX , sX)

[
γνF̃

D
BBX

(q2)

+κBσνλq
λF̃ P

BBX
(q2)

]
γ5u(p, s) , (2.15)

where

F̃D
BBX

(q2) =
1

2

∑
a

caF̃
D,a
BBX

(q2) , F̃ P
BBX

(q2) =
1

2

∑
a

caF̃
P,a
BBX

(q2) , (2.16)

are the generalized Dirac and Pauli form factors that describe the production of negative
parity baryons.

2.2. The Breit frame

It is usually convenient to work in the Breit frame where

pµ = (E, 0, 0, p) , qµ = (0, 0, 0,−2xp) , pµX = (E, 0, 0, p(1− 2x)) . (2.17)

The details of this frame are given in the Appendix. In the Breit frame, we obtain the
following helicity equation:

~pX · ~σχsX (~p) = (1− 2x)pσ3χsX (~p)
= sX(1− 2x)|~p|χsX (~p) , (2.18)

Using the relation |~pX| = |1− 2x||~p| and (2.8), we identify two situations:

If 1− 2x > 0 → χsX (~pX) = χsX (~p) ,
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If 1− 2x < 0 → χsX (~pX) = χ−sX (~p) . (2.19)

Positive parity resonances

Using the spinor relations of the previous subsection we can calculate the current matrix
elements in the Breit frame. For the time component, we get

〈pX, BX, sX|J0,a
V (0)|p,B, s〉

=
1

2(2π)3
(τa)IX3 I3

(
1

2E

)(
f

fX

){[
f 2
X + sXs|1− 2x| |~p|

2

f 2

]
FD,a
BBX

(q2)

−
(

1

2x

)[
f 2
X

f 2
− sXs|1− 2x|

]
q2κBF

P,a
BBX

(q2)
}
χ†sX (~pX)χs(~p) , (2.20)

where we have used the helicity equation pσ3χs = s|~p|χs. If we consider the two cases
in (2.19) and the orthogonality property χ†−s(~p)χs(~p) = 0, we can easily get rid of the
dependence on the helicity indices and the absolute value at the same time. We obtain

〈pX , BX , sX |J0,a
V (0)|p,B, s〉 =

1

2(2π)3
(τa)IX3 I3χ

†
sX

(~pX)χs(~p)

×
[
αFD,a

BBX
(q2)− βq2κBF

P,a
BBX

(q2)
]
, (2.21)

where

α =

(
1

2E

)(
f

fX

)[
f 2
X + (1− 2x)

|~p|2

f 2

]
, (2.22)

β =

(
1

2E

)(
f

fX

)(
1

2x

)[
f 2
X

f 2
+ 2x− 1

]
. (2.23)

Similarly, for the spatial components of the current, we obtain:

〈pX, BX, sX|J i,aV (0)|p,B, s〉 = − i

2(2π)3
(τa)IX3 I3ε

ijkqjχ
†
sX

(~pX)σkχs(~p)

×
[
βFD,a

BBX
(q2) + ακBF

P,a
BBX

(q2)
]
, (2.24)

where we used σ1 = −iσ2σ3, σ2 = iσ1σ3 and pσ3χs = s|~p|χs. We have also used some
properties of χ†sX (~p)σ2χs(~p) and χ†sX (~p)σ1χs(~p).

Negative parity resonances

Note that

γ5u(p, s) =
1√
2E

( s|~p|
f
χs(~p)

fχs(~p)

)
=

1√
2E

(
f̃χs(~p)
s|~p|
f̃
χs(~p)

)
, (2.25)

where

f̃ :=
s|~p|
f

. (2.26)
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Therefore, we can recycle the spinor identities obtained in the positive parity case by substi-
tuting f by f̃ in all the calculations. Then it is not difficult to check that in the Breit frame
the current matrix element takes the form

5〈pX, BX, sX|J0,a
V (0)|p,B, s〉 =

1

2(2π)3
(τa)IX3 I3χ

†
sX

(~pX)χs(~p)

×
[
α̃F̃D,a

BBX
(q2)− β̃ q2κBF̃

P,a
BBX

(q2)
]
, (2.27)

5〈pX, BX, sX|J i,aV (0)|p,B, s〉 = − i

2(2π)3
(τa)IX3 I3ε

ijkqjχ
†
sX

(~pX)σkχs(~p)

×
[
β̃F̃D,a

BBX
(q2) + α̃κBF̃

P,a
BBX

(q2)
]
,

(2.28)

where

α̃ =

(
1

2E

)(
f̃

fX

)[
f 2
X + (1− 2x)

|~p|2

f̃ 2

]
= s|~p|

(
f

fX

)(
1

2E

)[
f 2
X

f 2
+ 1− 2x

]
=: s|~p|α̂ , (2.29)

β̃ =

(
1

2E

)(
f̃

fX

)(
1

2x

)[
f 2
X

f̃ 2
+ 2x− 1

]
=

s

|~p|

(
f

fX

)(
1

2E

)(
1

2x

)[
f 2
X − (1− 2x)

|~p|2

f 2

]
=: s|~p|β̂ . (2.30)

Using the helicity equation

s|~p|χs(~p) = ~p · ~σχs(~p) = − 1

2x
~q · ~σχs(~p) , (2.31)

and the identity

σiσj = δij + iεijkσk , (2.32)

we get

5〈pX, BX, sX|J0,a
V (0)|p,B, s〉 = −

(
1

2x

)
1

2(2π)3
(τa)IX3 I3q

iχ†sX (~pX)σiχs(~p)

×
[
α̂F̃D,a

BBX
(q2)− β̂ q2κBF̃

P,a
BBX

(q2)
]
, (2.33)

5〈pX, BX, sX|J i,aV (0)|p,B, s〉 =

(
1

2x

)
~q2

2(2π)3
(τa)IX3 I3

(
δij − qiqj

~q2

)
χ†sX (~pX)σjχs(~p)

×
[
β̂F̃D,a

BBX
(q2) + α̂κBF̃

P,a
BBX

(q2)
]
. (2.34)
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2.3. Helicity amplitudes

In order to establish a simple connection between the Dirac and Pauli form factors and the
more commonly used helicity amplitudes, we first need to review some Gordon identities.
We start with a generalized Gordon identity

pXν γ
νγµ + pνγ

µγν = pXν

(
1

2
{γν , γµ}+

1

2
[γν , γµ]

)
+ pν

(
1

2
{γµ, γν}+

1

2
[γµ, γν ]

)
= pXν (ηµν + iσµν) + pν (ηµν − iσµν)
= (pX + p)µ + iσµνqν . (2.35)

Evaluating (2.35) on the initial and final spinor and recalling the Dirac equation

pµγ
µu(p, s) = imBu(p, s) , ū(pX, sX)pXµ γ

µ = imBX ū(pX, sX) , (2.36)

we get the Gordon decomposition for positive parity resonances:

ū(pX, sX)γµu(p, s) = − i

mBX +mB

ū(pX, sX) [(pX + p)µ + iσµνqν ]u(p, s) , (2.37)

On the other hand, if we multiply (2.35) by γ5 on the right, and evaluate it on the initial and
final spinors, and finally use the Dirac equation (2.36), we get the Gordon decomposition for
the negative parity case,

ū(pX, sX)γµγ5u(p, s) = − i

mBX −mB

ū(pX, sX) [(pX + p)µ + iσµνqν ] γ5u(p, s) . (2.38)

Here we used the fact that {γ5, γµ} = 0. Another useful spinor identity is

ū(pX, sX)qνγ
νγ5u(p, s) = i(mBX +mB)ū(pX, sX)γ5u(p, s) . (2.39)

This identity was obtained from the Dirac equation (2.36).

Positive parity resonances

First we define the G1(q2) and G2(q2) form factors through the vector current decomposition
[36]

〈pX, BX, sX|J µ(0)|p,B, s〉 = i ū(pX, sX)
{[

ηµν − qµqν

q2

]
γνq

2G1(q2)

+
1

2

[
(p2

X − p2)γµ − qνγν(pX + p)µ
]
G2(q2)

}
u(p, s) .

(2.40)

Using the Gordon identity (2.37) and the Dirac equation (2.36), we obtain

〈pX, BX, sX|J µ(0)|p,B, s〉 = i

(
ηµν − qµqν

q2

)
ū(pX, sX)

[
γνq

2G1(q2)

− 1

2
(mBX −mB)σνλq

λG2(q2)
]
u(p, s) . (2.41)
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Recalling the current decomposition (2.11), we get the Dirac and Pauli form factors in terms
of the G1(q2) and G2(q2) form factors:

FD
BBX

(q2) = q2G1(q2)

F P
BBX

(q2) = −1

2
(m2

BX
−m2

B)G2(q2) . (2.42)

According to [36], the transverse helicity amplitude A1/2(q2) is defined by

A1/2(q2) =

√
ER −mB

2mBK

[
q2G1(q2)− 1

2
(m2

BX
−m2

B)G2(q2)

]
=

√
ER −mB

2mBK

[
FD
BBX

(q2) + F P
BBX

(q2)
]
, (2.43)

where

K =
m2
BX
−m2

B

2mBX

, (2.44)

and ER is the proton energy in the resonance rest frame, i.e.

ER =
1

2mBX

(m2
BX

+m2
B + q2) . (2.45)

Details of the resonance rest frame are given in appendix A.2.
The helicity amplitude A1/2(q2) can be rewritten as [37]

A1/2(q2) =

√
mB

m2
BX
−m2

B

G+
BBX

(q2) , (2.46)

where

G+
BBX

(q2) =
ζ

mB

[
FD
BBX

(q2) + F P
BBX

(q2)
]
, (2.47)

and

ζ :=
√
mBX (ER −mB) =

1√
2

[
(mBX −mB)2 + q2

]1/2
. (2.48)

The longitudinal helicity amplitude S1/2(q2) is given by [36],

S1/2(q2) =

√
ER −mB

mBK

|~qR|
2

[
(mBX +mB)G1(q2) +

1

2
(mBX −mB)G2(q2)

]
=

√
ER −mB

mBK

|~qR|
2

[
mBX +mB

q2
FD
BBX

(q2)− 1

mBX +mB

F P
BBX

(q2)

]
, (2.49)

where ~qR is the spatial momentum of the virtual photon in the resonance rest frame. Ac-
cording to [38], this amplitude can be rewritten as

S1/2(q2) =

√
mB

m2
BX
−m2

B

|~qR|√
q2
G0
BBX

(q2) , (2.50)
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where

G0
BBX

(q2) =

√
q2

2

ζ

mB

[
mBX +mB

q2
FD
BBX

(q2)− 1

mBX +mB

F P
BBX

(q2)

]
. (2.51)

Negative parity resonances

In analogy with the previous case we define the G̃1(q2) and G̃2(q2) negative parity form
factors through the vector current decomposition as in [36],

5〈pX, BX, sX|J µ(0)|p,B, s〉 = −i ū(pX, sX)
{(

ηµν − qµqν

q2

)
γνq

2G̃1(q2)

+
1

2

[
(p2

X − p2)γµ − qνγν(pX + p)µ
]
G̃2(q2)

}
γ5u(p, s) .

(2.52)

Using the Gordon identity (2.38) and the spinor identity (2.39) in (2.52), we find

5〈pX, BX, sX|J µ(0)|p,B, s〉 = −i ū(pX, sX)

(
ηµν − qµqν

q2

)[
γνq

2G̃1(q2)

− 1

2
(mBX +mB)σνλq

λG̃2(q2)
]
γ5u(p, s) . (2.53)

Using (2.15) we obtain the relations

F̃D
BBX

(q2) = −q2G̃1(q2)

F̃ P
BBX

(q2) =
1

2
(mBX +mB)2G̃2(q2) . (2.54)

Now let us write the expressions for the helicity amplitudes. According to [36], the helicity
amplitudes A1/2(q2) are given by

Ã1/2(q2) =

√
ER +mB

2mBK

[
q2G̃1(q2)− 1

2
(m2

BX
−m2

B)G̃2(q2)

]
= −

√
ER +mB

2mBK

[
F̃D
BBX

(q2) +
mBX −mB

mBX +mB

F̃ P
BBX

(q2)

]
, (2.55)

where K and ER are given by (2.44) and (2.45), respectively.
Using the analog of (2.46), we get

G̃+
BBX

(q2) = − ζ̃

mB

[
F̃D
BBX

(q2) +
mBX −mB

mBX +mB

F̃ P
BBX

(q2)

]
, (2.56)

where

ζ̃ :=
√
mBX (ER +mB) =

1√
2

[
(mBX +mB)2 + q2

]1/2
. (2.57)
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The helicity amplitude S̃1/2(q2) is given by [36]

S̃1/2(q2) = −
√
ER +mB

mBK

|~qR|
2

[
(mBX −mB)G̃1(q2) +

1

2
(mBX +mB)G̃2(q2)

]
=

√
ER +mB

mBK

|~qR|
2

[
mBX −mB

q2
F̃D
BBX

(q2)− 1

mBX +mB

F̃ P
BBX

(q2)

]
, (2.58)

where ~qR is the spatial momentum of the virtual photon in the resonance rest frame. Using
the negative parity analog of (2.50) we get

G̃0
BBX

(q2) =

√
q2

2

ζ̃

mB

[
mBX −mB

q2
F̃D
BBX

(q2)− 1

mBX +mB

F̃ P
BBX

(q2)

]
. (2.59)

2.4. The proton structure functions

A typical deep inelastic scattering (DIS) process is illustrated in figure 1. The corresponding
differential cross section is determined by the hadronic tensor,

W µν =
1

8π

∑
s

∫
d4x eiq·x〈p, s|

[
J µ(x),J ν(0)

]
|p, s〉, (2.60)

where J µ(x) is the electromagnetic current, qµ and pµ are the momenta of the virtual photon
and the initial hadron, respectively. Inserting the sum of the final states X with momentum
pµX we can rewrite the hadronic tensor as

W µν =
1

8π

∑
s

∑
X

(2π)4δ4(p+ q − pX)〈p, s|J µ(0)|X〉〈X|J ν(0)|p, s〉 . (2.61)

One usually parametrizes DIS using as dynamical variables the Bjorken parameter x = − q2

2p·q
and the photon virtuality q2. The hadronic tensor can be decomposed in terms of the Lorentz
invariant scalar structure functions F1(x, q2) and F2(x, q2):

W µν = F1(x, q2)
(
ηµν − qµqν

q2

)
+

2x

q2
F2(x, q2)

(
pµ +

qµ

2x

)(
pν +

qν

2x

)
. (2.62)

The standard limit of DIS corresponds to the Bjorken limit of large q2 and fixed x. In this
paper we are interested in the regime of small q2 where non-perturbative contributions are
relevant (for a review of DIS, see e.g., [39]).

The baryonic tensor for a spin 1/2 baryon, in the case where one particle is produced in
the final state, can be written as

W µν =
1

8π

∑
s,sX

∑
mBX

∫
d4pX
(2π)3

θ(p0
X)δ(p2

X +m2
BX

)(2π)4δ4(p+ q − pX)

×
[
〈p,B, s|J µ(0)|pX , BX , sX〉〈pX , BX , sX |J ν(0)|p,B〉

+〈p,B, s|J µ(0)|pX , BX , sX〉5 5〈pX , BX , sX |J ν(0)|p,B〉
]

11
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Figure 1: Diagram for a deep inelastic scattering process. A lepton ` exchanges a
virtual photon with a hadron of momentum p.

=
1

4

∑
s,sX

∑
mBX

δ
[
(p+ q)2 +m2

BX

] [
〈p,B, s|J µ(0)|pX , BX , sX〉〈pX , BX , sX |J ν(0)|p,B, s〉

+〈p,B, s|J µ(0)|pX , BX , sX〉5 5〈pX , BX , sX |J ν(0)|p,B〉
]
. (2.63)

Note that we are including the contribution from positive parity resonances as well as negative
parity resonances. Substituting (2.11) and (2.15) into (2.63), we obtain

W µν = −1

4

∑
mBX

δ
[
(p+ q)2 +m2

BX

](
ηµρ − qµqρ

q2

)(
ηνσ − qνqσ

q2

)
×
{
FD
BBX

(q2)FD
BBX

(q2)Aρσ + F P
BBX

(q2)F P
BBX

(q2)Bρσ
+F P

BBX
(q2)FD

BBX
(q2)Cρσ + FD

BBX
(q2)F P

BBX
(q2)Dρσ

+F̃D
BBX

(q2)F̃D
BBX

(q2)Ãρσ + F̃ P
BBX

(q2)F̃ P
BBX

(q2)B̃ρσ
+F̃ P

BBX
(q2)F̃D

BBX
(q2)C̃ρσ + F̃D

BBX
(q2)F̃ P

BBX
(q2)D̃ρσ

}
, (2.64)

where

Aρσ = 4
{[

mBmBX + p2 − q2

2x

]
ηρσ − 2pρpσ − pρqσ − pσqρ

}
, (2.65)

Bρσ = 4κ2
Bq

2
{[
−mBmBX + p2 +

q2

2x

(
1− 1

x

)]
ηρσ − 2pρpσ

12



−1

x
(qρpσ + qσpρ) +

[
mBmBX − p2 − q2

2x

]
qρqσ
q2

}
, (2.66)

Cρσ = 4κBq
2
{
−
[
mB +

1

2x
(mBX −mB)

]
ηρσ + [mBqρ + (mB −mBX )pρ]

qσ
q2

}
,(2.67)

Dρσ = Cσρ , (2.68)

Ãρσ = 4
{[
−mBmBX + p2 − q2

2x

]
ηρσ − 2pρpσ − pρqσ − pσqρ

}
, (2.69)

B̃ρσ = 4κ2
Bq

2
{[

mBmBX + p2 +
q2

2x

(
1− 1

x

)]
ηρσ − 2pρpσ

−1

x
(qρpσ + qσpρ)−

[
mBmBX + p2 +

q2

2x

]
qρqσ
q2

}
, (2.70)

C̃ρσ = 4κBq
2
{[

mB −
1

2x
(mB +mBX )

]
ηρσ − [mBqρ + (mB +mBX )pρ]

qσ
q2

}
, (2.71)

D̃ρσ = C̃σρ , (2.72)

and we used the sum over spin formula∑
s

u(p, s)ū(p, s) = −iγµpµ +mB , (2.73)

and the gamma trace identities

tr(γµγν) = +4ηµν ,
tr(γµγνγργσ) = +4(ηµνηρσ − ηµρηνσ + ηµσηνρ) =: 4η̃µνρσ ,

tr(γµγνγργσγλγτ ) = +4
[
ηµν η̃ρσλτ − ηµρη̃νσλτ + ηµση̃νρλτ − ηµλη̃νρστ + ηµτ η̃νρσλ

]
,

tr(σµνγργσ) = − tr(σµνγσγρ) = 4i(−ηµρηνσ + ηµσηνρ) ,
tr(σµνσρσ) = −4(−ηµρηνσ + ηµσηνρ) ,

tr(σµνγρσσλστ ) = −4
[
− ηµρ(ηνσηλτ − ηνληστ ) + ηµση̃νρλτ − ηµλη̃νρστ

+ηµτ (−ηνσηρλ + ηνληρσ)
]
. (2.74)

Note that the terms with qρ or qσ will vanish when contracting with the transverse tensors.
Using (2.65),(2.66),(2.67),(2.68) in (2.64) and comparing to (2.62), we obtain the proton
structure functions

F1(q2, x) = F1(q2, x) + F̃1(q2, x) , (2.75)

F2(q2, x) = F2(q2, x) + F̃2(q2, x) , (2.76)

where

F1(q2, x) =
∑
mBX

δ
[
(p+ q)2 +m2

BX

]
ζ2
[
FD
BBX

(q2, x) + F P
BBX

(q2, x)
]2

=
∑
mBX

δ
[
(p+ q)2 +m2

BX

]
m2
B(G+

BBX
(q2))2 , (2.77)

F2(q2, x) =

(
q2

x

)∑
mBX

δ
[
(p+ q)2 +m2

BX

]
13



×
[
(FD

BBX
(q2))2 + κ2

Bq
2(F P

BBX
(q2))2

]
=

∑
mBX

δ
[
(p+ q)2 +m2

BX

]( q2

2x

)(
1 +

q2

4m2
Bx

2

)−1

×
[
(G+

BBX
(q2))2 + 2(G0

BBX
(q2))2

]
, (2.78)

are the positive parity contributions to the proton structure functions and

F̃1(q2, x) =
∑
mBX

δ
[
(p+ q)2 +m2

BX

]
ζ̃2

[
F̃D
BBX

(q2, x) +
mBX −mB

mBX +mB

F̃ P
BBX

(q2, x)

]2

=
∑
mBX

δ
[
(p+ q)2 +m2

BX

]
m2
B(G̃+

BBX
(q2))2 , (2.79)

F̃2(q2, x) =

(
q2

x

)∑
mBX

δ
[
(p+ q)2 +m2

BX

]
×
[
(F̃D

BBX
(q2))2 + κ2

Bq
2(F̃ P

BBX
(q2))2

]
=

∑
mBX

δ
[
(p+ q)2 +m2

BX

]( q2

2x

)(
1 +

q2

4m2
Bx

2

)−1

×
[
(G̃+

BBX
(q2))2 + 2(G̃0

BBX
(q2))2

]
, (2.80)

are the negative parity contributions to the proton structure functions. Here ζ, G+
BBX

(q2)

and G0
BBX

(q2) were defined in (2.48), (2.47) and (2.51) respectively while ζ̃, G̃+
BBX

(q2) and

G̃0
BBX

(q2) were given in (2.57), (2.56) and (2.59) respectively.

3. Dirac and Pauli form factors from holography

3.1. Review of the Sakai-Sugimoto model

3.1.1. Generalities and meson effective action

The Sakai-Sugimoto model [10,11] is the most widely studied string-theoretic model of large-
Nc QCD and has been successfully applied to investigate many of its phenomenological
aspects. Its holographic limit describes a stable configuration of D8−D8 branes embedded
into Witten’s D4 model [40]. In the following section we will briefly review those features
of this model which are important for the investigations carried out in this article. The
geometry of Witten’s model is generated by Nc coincident D4 branes with a compact spatial
direction τ in type IIA supergravity with the following metric, dilaton and four-form,

ds2 =
u3/2

R3/2

(
ηµνdx

µdxν + f(u)dτ 2
)

+
R3/2

u3/2

du2

f(u)
+R3/2u1/2dΩ2

4, (3.1)

f(u) = 1− u3
KK

u3
, eφ = gs

u3/4

R3/4
, F4 =

(2πls)
3Nc

VS4

ε4,

14



where uKK is the radial position of the tip of the cigar geometry generated by the D4 branes
and R = (πgsNc)

1/3
√
α′. To incorporate fundamental (quark and anti-quark) degrees of

freedom, one needs to introduce two stacks of Nf coincident D8 and D8 flavor branes into
the background generated by the Nc D4 branes. The probe condition Nf � Nc ensures that
the back reaction of the flavor branes on the geometry can be safely neglected. It turns out
that the solution to the DBI equations merges the two stacks of D8 and D8 branes in the
infrared region (small u), resulting in a geometrical realization of chiral symmetry breaking
U(Nf )× U(Nf )→ U(Nf ).

The dynamics of the gauge field fluctuations on the D8/D8 brane embedding is also
described by the Dirac-Born-Infeld action, which yields a vector meson effective field theory
given by a five dimensional U(Nf ) Yang-Mills-Chern-Simons theory in a curved background.
Its effective action reads [11]

Seff = SYM + SCS, (3.2)

SYM = κ

∫
d4x

∫
dz tr

[
1

2
h(z)ηµληνρFλρFµν +M2

KKk(z)ηµνFµzFνz
]
,

SCS =
Nc

24π2

∫
M4×R

ω5, (3.3)

where z is a dimensionless variable with domain (−∞,+∞) that combines the original left
and right chiral sectors (D8 and D8 branes), ω5 = tr

(
AF2 − i

2
A3F − 1

10
A5
)
, and the two

’warp factors’ are

h(z) := (k(z))−1/3 = (1 + z2)−1/3, k(z) := 1 + z2, κ =
λNc

216π3
, (3.4)

where λ = g2
YMNc is the t’Hooft coupling and MKK is a mass parameter related to the D4-

brane background. The quantity A = Aαdxα = Aµdxµ +Azdz (α = 0, 1, 2, 3, z) represents
the five-dimensional U(Nf ) gauge field and F = 1

2
Fαβdxα ∧ dxβ = dA + iA ∧ A is its field

strength. Expanding the gauge fields in the Az = 0 gauge as in [11]:

Aµ(x, z) = V̂µ(x) + Âµ(x)ψ0(z) +
∞∑
n=1

vnµ(x)ψ2n−1(z) +
∞∑
n=1

anµ(x)ψ2n(z) , (3.5)

where ψ0(z) := (2/π) arctan z and

V̂µ(x) =
1

2
e−

iΠ(x)
fπ [ALµ(x) + ∂µ] e

iΠ(x)
fπ +

1

2
e
iΠ(x)
fπ [ARµ(x) + ∂µ] e

−iΠ(x)
fπ

Âµ(x) =
1

2
e−

iΠ(x)
fπ [ALµ(x) + ∂µ] e

iΠ(x)
fπ − 1

2
e
iΠ(x)
fπ [ARµ(x) + ∂µ] e

−iΠ(x)
fπ . (3.6)

The field Π(x) is interpreted as the pion field. The modes ψn satisfy the following conditions

κ

∫
dzh(z)ψm(z)ψn(z) = δmn , (3.7)

−h(z)∂z [k(z)∂zψn(z)] = λn ψn(z) , (3.8)
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where n,m are positive integers.
In order to represent vector and axial-vector mesons, one performs the following field

redefinitions

ṽnµ = vnµ +
gvn

M2
vn
Vµ , ãnµ = anµ +

gan

M2
an
Aµ , (3.9)

Vµ =
1

2
(ALµ + ARµ) , Aµ =

1

2
(ALµ − ARµ) , (3.10)

introducing the constants

M2
vn = λ2n−1M

2
KK , M2

an = λ2nM
2
KK , (3.11)

gvn = κM2
vn

∫
dz k(z)−1/3ψ2n−1(z) , (3.12)

gan = κM2
an

∫
dz k(z)−1/3ψ2n(z)ψ0(z) . (3.13)

This way, one obtains the 4d effective Lagrangian

L4d
eff =

1

2
tr
(
∂µṽ

n
ν − ∂ν ṽnµ

)2
+

1

2
tr
(
∂µã

n
ν − ∂ν ãnµ

)2
+ tr (i∂µΠ + fπAµ)2

+ M2
vn tr

(
ṽnµ −

gvn

M2
vn
Vµ
)2

+M2
an tr

(
ãnµ −

gan

M2
an
Aµ
)2

+
∑
j≥3

Lj (3.14)

where Lj represents the interaction terms of order j in the fields and divergent terms were
disregarded. The massive fields ṽnµ, ãnµ represent vector and axial-vector mesons, respectively.
The decay constant gvn describes the coupling of the vector mesons ṽnµ to an external massless
vectorial field Vµ (the photon), while the decay constant gan couples the axial-vector meson
ãnµ to an external massless axial vector field Aµ. Note that gvn is the only interaction between
photons and mesons, which implies that vector meson dominance is realized in the Sakai-
Sugimoto model.

It is important to remark that in (3.14), the terms that depend only on the pion field
and external fields join to form the Skyrme and Wess-Zumino-Witten terms, as expected in
any effective description of non-perturbative QCD in the large-Nc limit.

3.1.2. Baryons in the Sakai-Sugimoto model

Let us describe the ideas behind the construction of holographic baryons. Recall that, in the
confined phase, the Sakai-Sugimoto model reduces to a five-dimensional U(Nf ) Yang Mills-
Chern Simons (YM-CS) theory with an action given by (3.2). In this article, we restrict
ourselves to the Nf = 2 case. Then, the U(2) gauge field A can be decomposed as

A = A+ Â
12

2
= Ai

τ i

2
+ Â

12

2
=

3∑
a=0

Aa τ
a

2
, (3.15)
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where τ i (i = 1, 2, 3) are Pauli matrices and τ 0 = 12 is a unit matrix of dimension 2. Thus,
the equations of motion are given by

−κ
(
h(z)∂νF̂

µν + ∂z(k(z)F̂ µz)
)

+
Nc

128π2
εµα2...α5

(
F a
α2α3

F a
α4α5

+ F̂α2α3F̂α4α5

)
= 0,

−κ (h(z)∇νF
µν +∇z(k(z)F µz))a +

Nc

64π2
εµα2...α5F a

α2α3
F̂α4α5 = 0,

−κk(z)∂νF̂
zν +

Nc

128π2
εzµ2...µ5

(
F a
µ2µ3

F a
µ4µ5

+ F̂µ2µ3F̂µ4µ5

)
= 0,

−κk(z) (∇νF
zν)a +

Nc

64π2
εzµ2...µ5F a

µ2µ3
F̂µ4µ5 = 0, (3.16)

where ∇α = ∂α + iAα is the covariant derivative. The baryon in the Sakai-Sugimoto holo-
graphic model is represented by a soliton with nontrivial instanton number in the four-
dimensional space parameterized by xM (M = 1, 2, 3, z). Consequently, the instanton num-
ber is interpreted as the baryon number NB, and reads

NB =
1

64π2

∫
d3xdz εM1M2M3M4F

a
M1M2

F a
M3M4

. (3.17)

The equations of motion (3.16) are complicated nonlinear differential equations in a curved
space-time. In general, it will be too difficult to find an analytic solution corresponding to
baryons. However, working in the large λ regime, one can utilize a 1/λ-expansion. Note that
in this limit SCS will be subleading compared to SYM, and therefore the leading contribution
for the instanton mass comes from the YM action. As discussed in [41], one can work with
a small instanton ansatz where the instanton is localized at z = 0 (because the instanton
size scales as λ−1/2) and the warp factors h(z), k(z) are approximately one. Thus, the
corresponding field equations will be solved by a BPST instanton with infinitesimal size
ρ → 0. Including the contributions to the field equations of the CS term induces a U(1)

electric field Â0 and will stabilize the size of the instanton at a finite value. The complete
classical solution,

Acl
M =− if(ξ)g∂Mg

−1 , Âcl
0 =

Nc

8π2κ

1

ξ2

[
1− ρ4

(ρ2 + ξ2)2

]
, A0 = ÂM = 0. (3.18)

thus corresponds to a static baryon configuration with

f(ξ) =
ξ2

ξ2 + ρ2
, g(x) =

(z − Z)− i(~x− ~X) · ~τ
ξ

, ξ =

√
(z − Z)2 + |~x− ~X|2, (3.19)

where XM = (X1, X2, X3, Z) = ( ~X,Z) gives the position in the spatial R4 direction. The
effective potential for ρ and Z reads

Veff(ρ, Z) = M0

(
1 +

ρ2

6
+

N2
c

5M2
0

1

ρ2
+
Z2

3

)
, (3.20)

where M0 = 8π2κMKK is the minimal, i.e. ground state, mass of the baryons. The effective
potential is minimized at

ρ2
cl =

Nc

M0

√
6

5
, Zcl = 0. (3.21)
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The quantization of the solitons is facilitated by utilizing the moduli space approximation
method to study a quantum mechanical problem on the instanton moduli space. For a more
detailled discussion of the quantization and on how to extend the solution to the large z
region, the interested reader is referred to refs. [12,15,41]. The resulting baryon eigenstates
are characterized by quantum numbers B = (l, I3, nρ, nz) in addition to their spin s. For
example, the baryon wave functions with quantum numbers Bn = (1,+1/2, 0, n) are given
by

|Bn ↑〉 ∝ R(ρ)ψBn(Z)(a1 + ia2), (3.22)

where

R(ρ) = ρ−1+2
√

1+N2
c /5 e

−M0√
6
ρ2

, (3.23)

ψBn(Z) =

(
(2M0)1/4

61/8π1/42n/2
√
n!

)
Hn

(√
2M06−1/4Z

)
e
−M0√

6
Z2

.

The mass formula for the baryonic eigenstates (obtained from the quantized Hamiltonian of
the system) reads

M = M0 +

√
(`+ 1)2

6
+

2

15
N2
c +

2(nρ + nz) + 2√
6

=: M̃0 +
2nz√

6
. (3.24)

The classical solution (3.18) is valid only near z = 0. This solution can be extended to
large z as long as we require ρ � ξ which is the condition of small size for the skyrmion.
Under this condition the equations of motion linearize and the solutions can be found by
defining Green’s functions corresponding to the curved space generated by k(z) :

G(~x, z, ~X,Z) = κ
∞∑
n=1

ψn(z)ψn(Z)Yn(|~x− ~X|)

H(~x, z, ~X,Z) = κ
∞∑
n=0

φn(z)φn(Z)Yn(|~x− ~X|) , (3.25)

where ψn(z) is the complete set of vector meson eigenfunctions, and φn(z) is another set
defined by

φ0(z) =
1√

κπk(z)
, φn(z) =

1√
λn
∂zψn(z) (n = 1, 2, . . . ) , (3.26)

and Yn(r) is the Yukawa potential

Yn(r) = − 1

4π

e−
√
λnr

r
. (3.27)

The gauge field solutions found in [15] for the case ρ� ξ can be written as

Â0 = −Nc

2κ
G(~x, z, ~X,Z) ,
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Âi =
Nc

2κ

{
Ẋ i +

ρ2

2

[
χa

2

(
εiaj

∂

∂Xj
− δia ∂

∂Z

)
+
ρ̇

ρ

∂

∂X i

]}
G(~x, z, ~X,Z) ,

Âz =
Nc

2κ

[
Ż +

ρ2

2

(
χa

2

∂

∂Xa
+
ρ̇

ρ

∂

∂Z

)]
H(~x, z, ~X,Z) ,

AΛ
0 = 2π2ρ2

{
2i a ȧ−1 + 2π2ρ2aτaa−1

[
Ẋ i

(
εiaj

∂

∂Xj
− δia ∂

∂Z

)
+ Ż

∂

∂Xa

]}
G(~x, z, ~X,Z) ,

AΛ
i = −2π2ρ2aτaa−1

(
εiaj

∂

∂Xj
− δia ∂

∂Z

)
G(~x, z, ~X,Z) ,

AΛ
z = −2π2ρ2aτaa−1 ∂

∂Xa
H(~x, z, ~X,Z) , (3.28)

where

AΛ
α = ΛAαΛ−1 − iΛ∂αΛ , Λ = ag−1V −1 . (3.29)

3.2. Electromagnetic currents in the Sakai-Sugimoto model

The holographic currents in the Sakai-Sugimoto model, denoted here by Jµ,aV (SS), can be

obtained using the holographic relations [15] :

Jµ,aV (SS) = −κ
{

lim
z→∞

[
KzF cl

µz

]
+ lim

z→−∞

[
KzF cl

µz

] }
, (3.30)

where F cl
µz is the field strength associated with the classical field (3.28). From (3.28) and

(3.30), one gets [15] :

J0,0
V (SS)(x) =

Nc

2
GV ,

J i,0V (SS)(x) = −Nc

2

{
Ż∂iHV − Ẋ iGV −

Sa
16π2κ

[
(∂i∂a − δia∂2)HV + εija∂jGV

] }
,

J0,c
V (SS)(x) = 2π2κ

{
ρ2 tr[τ c∂0(aτaa−1)]∂aHV +

Ic

2π2κ
GV

− ρ2 tr[τ caτaa−1]Ẋ i
[
(∂a∂i − δia∂2)HV + εija∂jGV

] }
,

J i,cV (SS)(x) = −2π2κρ2 tr[τ caτaa
−1]
[
(∂i∂a − δia∂2)HV + εija∂jGV

]
, (3.31)

where

GV = −
∑
n

gvnψ2n−1(Z)Y2n−1(|~x− ~X|) ,

HV = −
∑
n

gvn

λ2n−1

∂Zψ2n−1(Z)Y2n−1(|~x− ~X|) ,

Ż = − i

M0

∂Z =
PZ
M0

, Ẋ i = − i

M0

∂

∂X i
=

P i

M0

, (3.32)

and

Sa = 4π2κρ2χa = −i4π2κρ2 tr(τaa−1ȧ) , Ia = −i4π2κρ2 tr(τaaȧ−1) , (3.33)
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are the spin and isospin operators. Note that

Ż(∂iHV )− Ẋ iGV =
1

M0

[
(∂iHV )PZ −GV P

i
]
, (3.34)

where we used the relation ∂ZHV = −GV .
Defining the Fourier transform as

J̃µ,aV (SS)(
~k) =

∫
d3~xe−i

~k·xJµ,aV (SS)(x) , (3.35)

and using the identity ∫
d3~xe−i

~k·xY2n−1(|~x− ~X|) = − e−i
~k· ~X

~k2 + λ2n−1

, (3.36)

we find

J̃0,0
V (SS)(

~k) =
Nc

2
e−i

~k· ~X
∑
n

gvnψ2n−1(Z)

~k2 + λ2n−1

, (3.37)

J̃ i,0V (SS)(
~k) =

Nc

2
e−i

~k· ~X
{∑

n

gvnψ2n−1(Z)

~k2 + λ2n−1

[
P i

M0

+
i

16π2κ
εijakjSa

]
−
∑
n

gvn∂Zψ2n−1(Z)

λ2n−1(~k2 + λ2n−1)

[
ki

M0

∂Z +
1

16π2κ
(kika − ~k2δia)Sa

]}
, (3.38)

J̃0,c
V (SS)(

~k) = 2π2κ e−i
~k· ~X
{∑

n

gvnψ2n−1(Z)

~k2 + λ2n−1

[
Ic

2π2κ
− i

M0

εijaPikjρ
2 tr(τ caτaa

−1)

]
+
∑
n

gvn∂Zψ2n−1(Z)

λ2n−1(~k2 + λ2n−1)

[
ikiρ

2 tr[τ c∂0(aτ ia−1)]

+
1

M0

(~P · ~kki − ~k2Pi)ρ
2 tr[τ caτ ia−1]

]}
, (3.39)

J̃ i,cV (SS)(
~k) = 2π2κ e−i

~k· ~X
[
− i
∑
n

gvnψ2n−1(Z)

~k2 + λ2n−1

εijakj

+
∑
n

gvn∂Zψ2n−1(Z)

λ2n−1(~k2 + λ2n−1)
(kika − ~k2δia)

]
ρ2 tr(τ caτaa

−1) . (3.40)

Note that one term arising from Ż cancels with another from Ẋ i and we have used the
relation ∂2

Zψn(Z) ≈ −λnψn(Z). Now we calculate the expectation values of the Sakai-
Sugimoto currents:

〈pX , BX , sX |Jµ,aV (SS)(0)|p,B, s〉 =

∫
d3~k

(2π)3
〈pX , BX , sX |J̃µ,aV (SS)(

~k)|p,B, s〉 . (3.41)
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We define the baryon states as

|~p,B, s, I3〉 =
1

(2π)3/2
ei~p·

~X |nB〉|nρ〉|s, I3〉R ,

|~pX , BX , sX , I
X
3 〉 =

1

(2π)3/2
ei~pX ·

~X |nBX 〉|nρ〉|sX , IX3 〉R . (3.42)

Here we make use of the results and definitions of a recent publication [42], in which a
relativistic generalization of baryon states and wave functions was discussed in detail. In
particular, the spin and isospin part was defined as

|s, I3〉R =
1√
2E

(
f |s, I3〉
s|~p|
f
|s, I3〉

)
,

〈sX , IX3 |R =
1√

2EX

(
fX 〈sX , IX3 | −

sX |~pX |
fX

〈sX , IX3 |
)
, (3.43)

where |s, I3〉 and 〈sX , IX3 | are the non-relativistic initial and final states associated with the
spin and isospin operators. Evaluating the currents in these states, we find

〈J0,0
V (SS)(0)〉 =

1

(2π)3

Nc

2
〈sX , IX3 |s, I3〉RF 1

BBX
(~q2) , (3.44)

〈J i,0V (SS)(0)〉 =
1

(2π)3

Nc

2
〈sX , IX3 |R

{
F 1
BBX

(~q2)

[
pi

M0

− i

16π2κ
εijaqjSa

]
+

qi

M0

F 3
BBX

(~q2)− 1

16π2κ
F 2
BBX

(~q2)(qiqa − ~q2δia)Sa

}
|s, I3〉R , (3.45)

〈J0,c
V (SS)(0)〉 = 2π2κ

1

(2π)3
〈nρ|〈sX , IX3 |R

{
F 1
BBX

(~q2)

[
Ic

2π2κ
+

i

M0

εijapiqjρ
2 tr(τ caτaa

−1)

]
+ F 2

BBX
(~q2)

[
− iqiρ2 tr[τ c∂0(aτ ia−1)]

+
1

M0

(~P · ~qqi − ~q2Pi)ρ
2 tr[τ caτ ia−1]

]}
|nρ〉|s, I3〉R , (3.46)

〈J i,cV (SS)(0)〉 = 2π2κ
1

(2π)3

[
iF 1

BBX
(~q2)εijaqj + F 2

BBX
(~q2)(qiqa − ~q2δia)

]
× 〈nρ|ρ2|nρ〉〈sX , IX3 |R tr(τ caτaa

−1)|s, I3〉R . (3.47)

where

F 1
BBX

(~q2) =
∑
n

gvn〈nBX |ψ2n−1(Z)|nB〉
~q2 + λ2n−1

F 2
BBX

(~q2) =
∑
n

gvn〈nBX |∂Zψ2n−1(Z)|nB〉
λ2n−1(~q2 + λ2n−1)
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F 3
BBX

(~q2) =
∑
n

gvn〈nBX |∂Zψ2n−1(Z)∂Z |nB〉
λ2n−1(~q2 + λ2n−1)

, (3.48)

the momentum ~q is the photon momentum defined by ~q = ~pX − ~p and we have used

〈~pX |e−i
~k· ~X |~p〉 = δ3(~k − ~p+ ~pX) . (3.49)

In order to calculate the expectation values of the holographic currents we need the following
identities:

〈sX , IX3 |s, I3〉R =
1

2
√
EXE

(ffX − ssX |~p||~pX |
ffX

) δIX3 I3χ
†
sX

( ~pX)χs(~p) ,

〈sX , IX3 |R tr(τ caτaa−1)|s, I3〉R = − 1

3
√
EXE

(ffX − ssX |~p||~pX |
ffX

) τ cIX3 I3
χ†sX ( ~pX)σaχs(~p) ,

〈sX , IX3 |R Ic |s, I3〉R =
1

4
√
EXE

(ffX − ssX |~p||~pX |
ffX

) (τ c)IX3 I3χ
†
sX

( ~pX)χs(~p) ,

〈sX , IX3 |R Sa |s, I3〉R =
1

4
√
EXE

(ffX − ssX |~p||~pX |
ffX

) δIX3 I3χ
†
sX

( ~pX)σaχs(~p) ,

〈sX , IX3 |R tr(τ 3∂0(aτ ia−1))|s, I3〉R =
i

M0ρ2
√
EXE

(ffX − ssX |~p||~pX |
ffX

)

× (τ 3)IX3 I3 χ
†
sX

( ~pX)σiχs(~p) . (3.50)

The last identity can be obtained by first noticing that

tr(τ c∂0(aτ ia−1)) = − 2i

M0ρ2

{(
a4

∂

∂a4

− aa
∂

∂aa

)
δic + ai

∂

∂ac
+ ac

∂

∂ai

− εica
(
aa

∂

∂a4

− a4
∂

∂aa

)}
. (3.51)

Using (3.50), we get in the Breit frame

〈J0,0
V (SS)(0)〉 =

Nc

2(2π)3
ξδIX3 Iχ

†
sX

( ~pX)χs(~p)F
1
BBX

(~q2) ,

〈J i,0V (SS)(0)〉 =
Nc

2(2π)3M0

δIX3 Iχ
†
sX

( ~pX)
{
qi
[
F 3
BBX

(~q2)− 1

2x
F 1
BBX

(~q2)

]
ξ

− i

4
αεijaqjσaF

1
BBX

(~q2)
}
χs(~p) ,

〈J0,c
V (SS)(0)〉 =

ξ

2(2π)3
(τ c)IX3 I3χ

†
sX

( ~pX)χs(~p)F
1
BBX

(~q2) ,

〈J i,cV (SS)(0)〉 = −i α

2(2π)3

(
M0

3

)
〈nρ|ρ2|nρ〉 (τ c)IX3 I3

× εijaqjχ
†
sX

( ~pX)σaχs(~p)F
1
BBX

(~q2) , (3.52)

when the final state is a positive parity resonance, and

5〈J0,0
V (SS)(0)〉 = 0 ,

5〈J i,0V (SS)(0)〉 =
Nc

8(2π)3M0

~q2

(
δia − qiqa

~q2

)
δIX3 Iχ

†
sX

( ~pX)σaχs(~p)αF
2
BBX

(~q2) ,
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5〈J0,3
V (SS)(0)〉 =

1

2(2π)3
(τ 3)IX3 I3 qiχ

†
sX

( ~pX)σiχs(~p) ξF
2
BBX

(~q2),

5〈J i,3V (SS)(0)〉 =
1

2(2π)3
(τ 3)IX3 I3

(
M0

3

)
〈nρ|ρ2|nρ〉

× ~q2

(
δia − qiqa

~q2

)
χ†sX ( ~pX)σaχs(~p)αF

2
BBX

(~q2) , (3.53)

when the final state has negative parity. In (3.52) and (3.53) we used the definitions

ξ =

(
1

2E

)(
f

fX

)[
f 2
X +

~p2

f 2
(2x− 1)

]
,(

M0

3

)
〈nρ|ρ2|nρ〉 =

1√
6MKK

[
1 + 2

√
1 +

N2
c

5

]
=:

gI=1

4mB

, (3.54)

and α was defined in (2.22).

3.3. Dirac and Pauli form factors in the Sakai-Sugimoto model

We are going to use the holographic prescription

ηµ〈pX , BX , sX |Jµ,aV (0)|p,B, s〉 = ηµ〈pX , BX , sX |Jµ,aV (SS)(0)|p,B, s〉 , (3.55)

where ηµ = (η0, ~η) is the polarization of the photon and we choose to work with transverse
photons satisfying the relation ηµq

µ = 0 in order to avoid the discussion of current anomalies.
Using (3.55) we can compare, the kinematic currents (2.21), (2.24), (2.33) and (2.34)

with the Sakai-Sugimoto currents (3.52) and (3.53). For positive parity resonances we get

FD,0
BBX

(q2) =

[
ξα + βα q2

4M0

α2 + β2q2

]
NcF

1
BBX

(q2) ,

F P,0
BBX

(q2) = − 1

κB

[
βξ − α2

4M0

α2 + β2q2

]
NcF

1
BBX

(q2) ,

FD,3
BBX

(q2) =

[
ξα + βαq2

(
M0

3

)
〈ρ2〉

α2 + β2q2

]
F 1
BBX

(q2) ,

F P,3
BBX

(q2) = − 1

κB

[
βξ − α2

(
M0

3

)
〈ρ2〉

α2 + β2q2

]
F 1
BBX

(q2) , (3.56)

where α and β are given in (2.22), (2.23) and ξ is given in (3.54). For negative parity
resonances, we can write

F̃D,0
BBX

(q2) = x

(
q2

2M0

)[
β̂α

α̂2 + β̂2q2

]
NcF

2
BBX

(q2) ,

F̃ P,0
BBX

(q2) = x

(
1

2M0κB

)[
α̂α

α̂2 + β̂2q2

]
NcF

2
BBX

(q2) ,
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F̃D,3
BBX

(q2) = 2x

[
M0

3
〈ρ2〉β̂αq2 − α̂ξ
α̂2 + β̂2q2

]
F 2
BBX

(q2) ,

F̃ P,3
BBX

(q2) = 2x

(
1

κB

)[M0

3
〈ρ2〉α̂α + β̂ξ

α̂2 + β̂2q2

]
F 2
BBX

(q2) , (3.57)

where α̂ and β̂ are given in (2.29) and (2.30), respectively. We relegate the details of the
large λ expansions relevant to get the dominant contribution to the form factors in the non-
elastic case to appendix B. The large λ limit in the elastic case, corresponding to nX = 0,
mBX = mB was already considered in [15]. In the non-elastic case, the positive parity
resonances correspond to nBX = 2, 4, 6, . . .. In this case, we get in the large λ limit [12] :

FD,0
BBX

(q2) =

[
mB

E
+O

(
1

λNc

)]
NcF

1
BBX

(q2) ,

F P,0
BBX

(q2) =

[
gI=0

2
− mB

E
+O

(
1

λNc

)]
NcF

1
BBX

(q2) ,

FD,3
BBX

(q2) =

[
mB

E
+O

(
1

λ

)]
F 1
BBX

(q2) ,

F P,3
BBX

(q2) =
gI=1

2

[
1 +O

(
1

λNc

)]
F 1
BBX

(q2) . (3.58)

For negative parity resonances, we have nBX = 1, 3, 5, . . .. Using the expansions in appendix
B is not difficult to show that in the large λ limit the form factors reduce to

F̃D,0
BBX

(q2) =
q2

4E
gI=0

[
1 +O

(
1

λNc

)]
NcF

2
BBX

(q2) , (3.59)

F̃ P,0
BBX

(q2) =

(
1

x

)
q2

4E
gI=0

[
1 +O

(
1

λNc

)]
NcF

2
BBX

(q2) , (3.60)

F̃D,3
BBX

(q2) =
q2

4E
gI=1

[
1 +O

(
1

Nc

)]
F 2
BBX

(q2) , (3.61)

F̃ P,3
BBX

(q2) =

(
1

x

)
q2

4E
gI=1

[
1 +O

(
1

Nc

)]
F 2
BBX

(q2) . (3.62)

4. Numerical results for negative parity baryons

We present in this section our numerical results for the negative parity baryons. These include
the wave functions, Dirac and Pauli form factors, helicity amplitudes and their contribution
to the proton structure function. We are using the Sakai-Sugimoto parameters MKK =
949MeV and κ = 7.45 × 10−3 [11]. We also choose M̃0 = 940MeV, for phenomenological
reasons.

4.1. Baryon wave functions

First we present in fig. 2 the results for the wave functions of the first excited baryons
with negative parity. These wave functions have quantum numbers Bn = (1,+1/2, 0, n)
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with n = 2k − 1 and are odd functions in the radial coordinate z. Table 1 shows the mass
spectrum of the first negative parity baryonic resonances. The spectrum of positive parity
baryonic resonances can be found in [12].
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Figure 2: (Normalized) wave functions ΨB2k−1
(z) for the first six parity odd baryon states.

4.2. Dirac and Pauli Form factors

In the previous section we extracted from holography the Dirac and Pauli form factors that
describe the production of negative parity baryons. Interestingly, our results (3.62) show
that the Dirac and Pauli form factors depend on only one form factor F 2

BBX
(~q2) defined

by (3.48). This is a feature that has also appeared in previous holographic approaches to
electromagnetic scattering2. The form factor F 2

BBX
(~q2) in (3.48) can be written as

F 2
BBX

(~q2) =
∑
n

gvngvnB0BX

~q2 + λ2n−1

(4.1)

2See [43,44] for a similar result for vector meson form factors in the holographic approach.
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n 1 3 5 7 9 11 13 15
mBn/GeV 1.715 3.265 4.814 6.364 7.914 9.463 11.013 12.563

Table 1: Some numerical values for the masses of negative parity baryon states

where

gvnB0BX :=
1

λ2n−1

〈nBX |∂Zψ2n−1(Z)|nB〉 , (4.2)

are the effective couplings between a vector meson, a negative parity baryon and the proton.
We show in table 2 our numerical results for these effective couplings. Identifying the first
negative parity resonance with the experimentally observed S11(1535), our numerical result
for the coupling constant gv1B0B1 = −1.889 should be useful to describe the decay of S11(1535)
into a ρ meson and a proton. This result is compatible with recent analysis from experimental
data [45] where 0.79 < |gv1B0B1| < 2.63. The vector meson squared masses λ2n−1 and decay
contants gvn are also shown in table 2 .

n 1 2 3 4 5 6 7 8

λ2n−1 0.6693 2.874 6.591 11.80 18.49 26.67 36.34 47.49
gvn√
κM2

KK
2.109 9.108 20.80 37.15 58.17 83.83 114.2 149.1

gvnB0B1 -1.889 1.182 -0.562 0.1381 0.04057 -0.05213 0.01239 0.009893
gvnB0B3 1.038 -0.841 0.6132 -0.3325 0.08703 0.04209 -0.05382 0.01409
gvnB0B5 -0.6432 0.5892 -0.5217 0.3802 -0.1907 0.02706 0.05097 -0.04458
gvnB0B7 0.429 -0.4239 0.4223 -0.3644 0.2416 -0.09421 -0.01629 0.05276
gvnB0B9 -0.3005 0.3132 -0.3386 0.3273 -0.2571 0.1417 -0.0266 -0.0404

Table 2: Coupling constants between vector mesons and baryons when the initial state is
the proton and the final state has negative parity.

The Dirac and Pauli form factors depend on the magnetic gI factors whose numerical
values in the Sakai-Sugimoto model are given by

gI=0 ≈ 1.684 , gI=1 ≈ 7.031 . (4.3)

Using (4.3) and our results for the couplings, masses and decay constants (shown in table
2) we can calculate the Dirac and Pauli form factors describing the production of negative
parity baryon states. We show our results for the first three excited states in figure 3. As a
general feature, the form factors go to zero as q2 → 0, reach a maximum and then decay for
large q2. Note that some of the form factors are non-positive.
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Figure 3: Dirac and Pauli form factors F̃D,P
B0B2j−1

(q2) for the first three negative parity baryon

states. The momentum transfer q2 is given in (GeV)2.

4.3. Helicity amplitudes: comparison with JLab-CLAS data

In the large λ limit, the transverse helicity amplitudes take the form

G̃+
BBX

(q2) ≈ −
√

2

[
F̃D
BBX

(q2) +
mBX −mB

2mB

F̃ P
BBX

(q2)

]
,

Ã1/2
BBX

(q2) ≈ e√
2(mBX −mB)

G̃+
BBX

(q2) , (4.4)

In figure 4 we show our results for the transverse helicity amplitudes G̃+
BBX

(q2) and

Ã1/2
BBX

(q2) for the first negative parity resonance. As stated above, this resonance can be
identified with the experimentally observed S11(1535). In the right panel of figure 4 we

compare our results for Ã1/2
BBX

(q2) with recent experimental data from the JLAB-CLAS
collaboration [46]. In spite of the model limitations (the large λ limit), we find reasonable
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agreement with experimental data. This is a very encouraging result for our long-term
project of investigating resonance production in holographic models.

Unfortunately, in the large λ limit we cannot say too much about the longitudinal helicity
amplitudes because we obtain

G̃0
BBX

(q2) ≈
√
q2

[
mBX −mB

q2
F̃D
BBX

(q2)− 1

2mB

F̃ P
BBX

(q2)

]
≈ 0 ,

S̃1/2
BBX

(q2) ≈ e

√
mB

q2
G̃0
BBX

(q2) ≈ 0 . (4.5)

This result seems to be consistent with the fact that the experimental data available for
these helicity amplitudes indicate a strong contribution from meson clouds [46]. These kinds
of effects would require the investigation of loop corrections in electromagnetic scattering.
The 1/λ corrections would not only modify our results but also the standard results on the
elastic electromagnetic form factors3. We leave this interesting issue for future work.
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Figure 4: Helicity amplitudes G̃+
B0B1

(q2) and Ã1/2
BBX

(q2) (in units 10−3(GeV)−1/2) plotted
versus q2 in (GeV)2. The experimental data was taken from ref. [46].

4.4. The proton structure function

4.4.1. A first approximation

Assuming approximate continuity of the mass distribution, we can now approximate the
delta distributions in the following way:∑

BX

δ[m2
BX
− s] =

∑
n

δ[m2
n −m2

n̄] =

∫
dn

[∣∣∣∣∂m2
n

∂n

∣∣∣∣]−1

δ(n− n̄)

=

[∣∣∣∣∂m2
n

∂n

∣∣∣∣]−1

n=n̄

=: f(n̄), (4.6)

with the definition

s := −(p+ q)2 = m2
B0

+ q2(
1

x
− 1). (4.7)

3See [47] for a discussion regarding pion loop corrections in baryon electromagnetic form factors.
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Therefore we have to evaluate the Regge trajectory of the baryon spectrum in order to

calculate ∂m2
n

∂n
. We find from (3.24)

∂m2
n

∂n
=

(
4√
6
M̃0MKK +

4

3
nM2

KK

)
, (4.8)

where M̃0 can be chosen to match, e.g. the proton mass mB0 and n := nz.
Using the approximation (4.6) we get in the large λ limit the structure functions

F̃1(q2, x) ≈ f(n̄)m2
B(G̃+

BBn̄
(q2))2 ,

F̃2(q2, x) ≈ f(n̄)

(
q2

2x

)(
1 +

q2

4m2
Bx

2

)−1

(G̃+
BBn̄

(q2))2 . (4.9)

We plot in figures 5 and 6 the structure functions obtained from (4.9) as a function of
q2 and x. We also demonstrate the violation of the Callan-Gross relation at intermediate
values of x in 7.
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Figure 5: Structure functions F1,2(q2) for x = 0.3 (orange, solid), x = 0.1 (red, dashed) and
x = 0.01 (green, dotted).
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Figure 6: Structure functions F̃1,2(x) for q2 = 3(GeV)2 (purple, solid), q2 = 2(GeV)2 (blue,
dotdashed), q2 = 1(GeV)2 (green, dotted) and q2 = 0.5(GeV)2 (red, dashed).
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Figure 7: Callan-Gross ratio RCG(x) for q2 = 3(GeV)2 (purple, solid), q2 = 2(GeV)2 (blue,
dotdashed), q2 = 1(GeV)2 (green, dotted) and q2 = 0.5(GeV)2 (red, dashed).
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Figure 8: Structure functions F1,2(x) for q2 = 3(GeV)2 (purple, solid), q2 = 2(GeV)2 (blue,
dotdashed), q2 = 1(GeV)2 (green, dotted) near the first negative parity resonance B1

4.4.2. A realistic approach near a resonance peak

The results shown in figures 5 and 6 were obtained using a the naive approximation (4.6).
Alternatively, if we are only interested in the region of q2 where a resonance is produced we
can approximate the Delta distribution by a Lorentzian function [37] :

δ[m2
BX
− s] ≈ ΓBX

4πmBX

[
(
√
s−mBX )2 +

Γ2
BX

4

]−1

, (4.10)

where ΓBX is the decay width of the resonance BX . Identifying the first negative parity
baryonic resonance B1 with the experimentally observed S11(1535) and using the decay
width ΓB1 = 150 Mev, estimated from experimental data in [48], we obtain the results for
the structure functions shown in Figure 8. Note that the structure functions have improved
by an order of magnitude. Unfortunately, we cannot follow this procedure for the higher
resonances because there are no experimental results available for the decay widths.

The results for the proton structure functions obtained in this paper represent only a
small fraction of possible final states, namely single final states with spin 1/2 and negative
parity. If we include the contribution from final states with positive parity [12] as well as
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final states with higher spin4 and pion production relevant in this kinematical regime, we
should get a better/more complete picture of the proton structure functions and significantly
improve the comparison with experimental data.

5. Conclusions and Outlook

In this article we have presented a treatment of non-elastic proton electromagnetic scattering
for the special case when baryonic resonances of negative parity are produced as the single-
particle final state of the scattering process. We have in turn applied the Sakai-Sugimoto
model of holographic baryons in the large λ limit to compute the relevant form factors
and proton structure functions. Our numerical results show good agreement with available
experimental data. One should, however, keep in mind the limitations of the (holographic)
description of baryons in large-Nc QCD [49], which fully apply to the non-relativistic (large
λ) model discussed herein as well. It would be very interesting to calculate 1/λ- and other
corrections to the current model and to study other scattering processes within the Sakai-
Sugimoto model. Finally, it would be fruitful to investigate baryons and their resonance
production in more recent holographic models, e.g., [50,51,52]. We leave this for future
work.
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A. Some frames in inelastic scattering

A.1. The Breit frame

Consider the scattering between a virtual photon and a hadron in the hadron rest frame.
After two rotations we can set the spatial momentum of the photon to the x3 direction so

pµ = (mB, 0, 0, 0)
qµ = (q0, 0, 0, q3) , (A.1)

and we choose q3 > 0. The virtuality and Bjorken variable are in this frame given by

Q2 = q2
3 − q2

0 , x = − Q2

2mBq0

. (A.2)

Now we perform a boost in the x3 direction so that

p′µ = (γmB, 0, 0,−βγmB)

4Usually one expects a high contribution coming from the production of ∆ resonances. See [18] for ∆
resonances in the Sakai-Sugimoto model and [19] for higher spin resonances.
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q′µ = (γq0 − βγq3, 0, 0,−βγq0 + γq3) . (A.3)

The Breit Frame is defined by the condition q′0 = 0 so that

β =
q0

q3

=
q0√

q2
0 +Q2

, γ =

√
q2

0 +Q2

Q
, q′3 = Q , (A.4)

and we arrive to

p′µ = (
√
m2
B + p2, 0, 0, p)

q′µ = (0, 0, 0, Q) , (A.5)

with

p = − Q
2x

. (A.6)

A.2. The resonant rest frame

In the resonant frame we have

pµ = (ER , −~q) ,
qµ = (mBX − ER , ~qR) ,

(p+ q)µ = (mBX , 0) . (A.7)

We can write the energy and the momentum squared in terms of the squared masses and
virtuality

ER =
1

2mBX

[
q2 +m2

BX
+m2

B

]
|~qR|2 = (ER −mB)(ER +mB) . (A.8)

B. Expansions at large λ

The relevant large λ expansions for the non-elastic case are given by

q2 ∼ O(1) , mB ∼ O(λNc) ,

mBX = mB +
2√
6
nXMKK = mB

[
1 +O

(
1

λNc

)]
,

x =

(√
6

4

)
q2

mBMKKnX

[
1 +O

(
1

λNc

)]
= O

(
1

λNc

)
,

E = mB

√
1 +

2

3

n2
XM

2
KK

q2

[
1 +O

(
1

λNc

)]
,(

M0

3

)
〈ρ2〉 =

gI=1

4mB

= O(Nc) , α = 1 +O
(

1

λNc

)
,
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β =
1

2mB

[
1 +O

(
1

λNc

)]
= O

(
1

λNc

)
,

α̂ =

(
f

fx

)(
1

2E

)[
f 2
x

f 2
+ 1− 2x

]
=

1

E

[
1 +O

(
1

λNc

)]
,

β̂ =
2x

q2
ξ =

(
2x

q2

)
mB

E

[
1 +O

(
1

λNc

)]
= O

(
1

λNc

)
,

ξ =
mB

E
+O

(
1

λNc

)
, α2 + β2q2 = 1 +O

(
1

λNc

)
,

ξα + βα
q2

4M0

=
mB

E
+O

(
1

λNc

)
,

− 1

κB

(
βξ − α2

4M0

)
=

gI=0

2
− mB

E
+O

(
1

λNc

)
ξα + βαq2

(
M0

3

)
〈ρ2〉 =

mB

E
+O

(
1

λ

)
,

− 1

κB

[
βξ − α2

(
M0

3

)
〈ρ2〉

]
=

gI=1

2

[
1 +O

(
1

λNc

)]
,

α̂2 + β̂2q2 =
4x2

q2

[
1 +O

(
1

λNc

)]
,

x

(
q2

2M0

)
β̂α =

x2

E
gI=0

[
1 +O

(
1

λNc

)]
,

x

(
1

2M0κB

)
α̂α =

x

E
gI=0

[
1 +O

(
1

λNc

)]
,

2x

[
M0

3
〈ρ2〉β̂αq2 − α̂ξ

]
=

x2

E
gI=1

[
1 +O

(
1

Nc

)]
,

2x

(
1

κB

)[
M0

3
〈ρ2〉α̂α + β̂ξ

]
=

x

E
gI=1

[
1 +O

(
1

Nc

)]
. (B.1)
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