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Abstract

We investigate the production of positive parity baryon resonances in proton electromag-
netic scattering within the Sakai-Sugimoto model. The latter is a string model for the
non-perturbative regime of large Nc QCD. Using holographic techniques we calculate the
generalized Dirac and Pauli form factors that describe resonance production. We use these
results to estimate the contribution of resonance production to the proton structure func-
tions. Interestingly, we find an approximate Callan-Gross relation for the structure functions
in a regime of intermediate values of the Bjorken variable.
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1. Introduction

In the regime of low momentum transfer (
√
q2 lower than a few GeV s), non-perturbative

effects become relevant in hadronic scattering. Lattice QCD (the numerical approach of
substituting the continuous spacetime by a lattice of points) is quite difficult to use here
because of the real time dependence in scattering processes. Effective models can be very
useful but they have a low predictability because they may depend on many parameters.

In recent years, gauge/string duality has evolved into an invaluable tool to study many
strongly coupled phenomena in particle and condensed matter physics. In particular, it has
brought a new insight into the strongly coupled regime of Yang-Mills theories. A good ex-
ample is the successful prediction of the shear viscosity for strongly coupled theories whose
gravity dual involves a black hole in Anti-de-Sitter space [1]. This prediction is in accor-
dance with the small value observed in the quark-gluon plasma phase observed in heavy ion
collisions at RHIC and LHC. The study of 10-d string models (top-down approach) and 5-d
effective models (bottom-up approach) dual to 4-d QCD-like theories is known as AdS/QCD
(see [2,3,4,5] for a review of the top-down approach, [6,7,8] for the bottom-up approach and
[9] for an hybrid approach). AdS/QCD is a powerful approach to the strong coupling regime
of QCD because the string models depend on very few parameters (the string length, string
coupling and number of colors and flavours of the dual theory). On top of that, general
properties of hadron phenomenology (like vector meson dominance) seem to be universal
in this approach in the sense that they do not depend on the particular AdS/QCD model.
There is one string model, though, that has a field content very similar to large Nc QCD in
the regime of large distances and massless quarks. This is the Sakai-Sugimoto model [10,11]
that realizes confinement and chiral symmetry breaking.

In this paper we investigate the production of baryon resonances with positive parity in
proton electromagnetic scattering within the Sakai-Sugimoto model. First we define the cur-
rent matrix element that describe the transition from a proton to a positive parity baryonic
resonance. We derive the general expansion of the current matrix element in terms of scalars
that we define as generalized Dirac and Pauli form factors which include as a particular case
the well known elastic Dirac and Pauli form factors. Using holographic techniques we obtain
a relation between the generalized Dirac and Pauli form factors and the couplings between
baryons and vector mesons. This result can be interpreted as a realization of vector meson
dominance in electromagnetic scattering of baryons. We use our results for the generalized
Dirac and Pauli form factors to estimate the helicity amplitudes that describe transitions
between baryons with different helicities.

We also estimate in this paper the contribution of resonance production to the proton
structure functions. The latter are Lorentz invariant scalars defined in Deep Inelastic Sca-
tering (DIS) which is the inclusive scattering of a proton by a virtual photon (emitted by a
lepton). The proton structure functions have a nice interpretation in terms of parton distri-
bution functions that describe probability densities of finding partons (valence quarks, gluons
and quark-antiquark pairs) with a fraction of the longitudinal momentum of the proton. A
calculation of these quantities at low momentum transfer proves difficult in non-perturbative
QCD and usually relies heavily on some input from experiments or simulations. It should be
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noted that in the Sakai-Sugimoto model we can only make reliable predictions about scat-
tering processes with low momentum transfers ( in this paper q2 ≤ 5(GeV )2). This regime
is very far from the Bjorken limit of DIS (q2 → ∞) which is well described by perturbative
QCD. Moreover, it is beyond the scope of this paper to study the full inclusive DIS process
with arbitrary final states. Therefore we limit ourselves to the contribution coming from
single final state baryons with the same spin and isospin as the proton but different masses.

Electromagnetic form factors have been obtained previously using bottom-up (phenomeno-
logical) models and top-down string models. The meson form factors have been calculated
in [12,13,14] (bottom-up) and [15,16,17,18] (top-down). Baryon form factors have been ob-
tained in [19,20] (bottom-up) and [21,22,23,24] (top-down). Deep Inelastic Scattering in
AdS/QCD was first investigated by Polchinski and Strassler in a bottom-up model for the
case of scalar glueballs and baryon-like fermions [25]. Further development of DIS in bottom-
up and top-down models include the large x regime [26,27,28,29] as well as the small x regime
where Pomeron exchange dominates [30,31,32,33,34,35]. DIS structure functions have also
been calculated for strongly coupled plasmas [36,37,38,39].

The discussion in section 2 is independent of a specific model realization and contains
novel results that apply very generally to non-elastic electromagnetic scattering for baryons,
namely a detailed derivation of electromagnetic current matrix elements, generalized form
factors, structure functions and helicity amplitudes. In section 3 we briefly review the Sakai-
Sugimoto model and the description of holographic baryons. Section 4 contains the derivation
of the generalized Dirac and Pauli form factors in the Sakai-Sugimoto model. Numerical
results for the wave functions, masses, couplings, form factors and helicity amplitudes are
presented for the lowest excited states of spin 1/2 and positive parity. In section 5 we present
our numerical estimate on the proton structure functions and the associated Callan-Gross
relation.

2. Baryon resonances in proton electromagnetic scattering

Massless QCD with Nf flavours enjoys chiral symmetry (U(Nf )L × U(Nf )R) at high ener-
gies. At low energies chiral symmetry is spontaneously broken and the residual symmetry
is vectorial corresponding to the group U(Nf )V . In the case of two flavours, the vectorial
current can be written as Jµ,a

V where a = (0, 1, 2, 3). The electromagnetic current J µ can be
obtained as a combination of the isoscalar current Jµ,0

V and the isovector current Jµ,3
V :

J µ =
1

Nc

Jµ,0
V + Jµ,3

V ≡
3∑

a=0

caJ
µ,a
V . (2.1)

In this paper we are interested in the production of baryon resonances with positive parity in
electromagnetic scattering of a proton. Namely, we study the transition of a proton (denoted
by B) with spin 1/2, isospin 1/2 and momentum p to a baryonic resonance (denoted by BX)
with the same spin and isospin as the proton but momentum pX and different mass. This
transition is characterized by evaluating the matrix elements of electromagnetic currents
between the baryonic initial and final states. We denote the spin and isospin projections of
the initial (final) baryon state as s (sX) and I3 (IX3 ) respectively.
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2.1. The generalized Dirac and Pauli form factors

Evaluating the isoscalar and isovector current operators in the baryonic states we obtain
current matrix elements that can be decomposed as

〈pX , BX , sX , I
X
3 |Jµ,a

V (0)|p, B, s, I3〉 =
i

2(2π)3
(τa)IX3 I3ū(pX , sX)

[
γµFD,a

BBX
(q2)

+ κBσ
µνqνF

P,a
BBX

(q2) + iqµFQ,a
BBX

(q2)
]
u(p, s) , (2.2)

where

qµ = (pX − p)µ , κB =
1

mB +mBX

,

(τ 0)IX3 I3 = δIX3 I3 , (τa)IX3 I3 = (σa)IX3 I3 a = (1, 2, 3) , (2.3)

and σa are the Pauli matrices. In (2.2) we have used a generalization of the Gordon decom-
position identity

ūBX
(p′)γµuB(p) = ūBX

(p′)

[
− p′µ + pµ

mB +mBX

+
iσµν (p′ν − pν)

mB +mBX

]
uB(p) . (2.4)

The scalars FD,a
BBX

(q2),F P,a
BBX

(q2) in (2.2) are the Dirac and Pauli form factors while FQ,a
BBX

(q2)
is required by current conservation

0 = qµ〈Jµ,a
V (0)〉 ∼ ū(pX , sX)

[
(pX − p)µγ

µFD,a
BBX

(q2) + iq2FQ,a
BBX

(q2)
]
u(p, s)

= ū(pX , sX)
[
i(mBX

−mB)F
D,a
BBX

(q2) + iq2FQ,a
BBX

(q2)
]
u(p, s) , (2.5)

so that

FQ,a
BBX

(q2) = − 1

q2
(mBX

−mB)F
D,a
BBX

(q2) . (2.6)

The current matrix element now takes a transverse form

〈pX , BX , sX |Jµ,a
V (0)|p, B, s〉 =

i

2(2π)3
(τa)IX3 I3

(
ηµν − qµqν

q2

)
ū(pX , sX)

[
γνF

D,a
BBX

(q2)

+ κBσνλq
λF P,a

BBX
(q2)

]
u(p, s) . (2.7)

We have chosen the signature ηµν = diag(−,+,+,+). The relativistic Dirac spinors that
represent the initial and final states can be written as

u(p, s) =
1√
2E

(
f χs(~p)
~p·~σ
f
χs(~p)

)
, u(pX, sX) =

1√
2EX

(
fX χsX (~pX)
~pX ·~σ
fX

χsX(~pX)

)
, (2.8)

where f =
√
E +mB and fX =

√
EX +mBX

. The two-component spinors χs(~p) and
χsX (~pX) are defined as eigenstates of the helicity operators

~p · ~σ
|~p| χs(~p) = s χs(~p) ,

~pX · ~σ
|~pX |

χsX (~pX) = sX χsX (~pX) . (2.9)
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The convention for gamma matrices is

γ0 = −i
(

1 0
0 −1

)
, γi = −i

(
0 σi

−σi 0

)
, σµν =

i

2
[γµ, γν ] . (2.10)

The baryon states are normalized according to their charges as

〈pX , BX , sX , I
X
3 |Qa

V |p, B, s, I3〉 = 〈pX , BX , sX , I
X
3 |J0,a

V (0)|p, B, s, I3〉(2π)3δ3(~q)
=

1

2
(τa)IX3 I3δ

3(~q)δsXsδBBX
FD,a
BB (0) . (2.11)

In the case where the initial state is a proton and the final state has the same isospin polar-
ization (IX3 = I3 = 1/2) the isoscalar and isovector charges are Nc/2 and 1/2 respectively.
The elastic Dirac form factors are fixed at q2 = 0 as

FD,0
BB (0) = Nc , FD,3

BB (0) = 1 , (2.12)

so we find from (2.11)

〈pX , BX , sX , 1/2|p, B, s, 1/2〉 = δ3(~pX − ~p)δsXsδBXB . (2.13)

The following spinor relations are very useful

ū(pX , sX)γ
0u(p, s) = − i

2
√
EEX

χ†
sX
(~pX)

[
ffX +

1

ffX
~pX · ~σ~p · ~σ

]
χs(~p)

= − i

2
√
EEX

(
f

fX

)[
EX +mBX

+
sXs|~pX ||~p|
E +mB

]
χ†
sX
(~pX)χs(~p) ,

(2.14)

ū(pX , sX)γ
iu(p, s) = − i

2
√
EEX

χ†
sX
(~pX)

{fX
f
σi~p · ~σ +

f

fX
~pX · ~σσi

}
χs(~p)

= − i

2
√
EEX

(
f

fX

)[
EX +mBX

E +mB
s|~p|+ sX |~pX |

]
χ†
sX
(~pX)σ

iχs(~p) ,

(2.15)

ū(pX , sX)σ
0iqiu(p, s) = − i

2
√
EEX

[
fX
f
qipj − f

fX
(p+ q)iqj

]
χ†
sX
(~pX)σiσjχs(~p)

= − i

2
√
EEX

(
f

fX

)[
EX +mBX

E +mB
s|~p| − sX |~pX |

]
qi χ

†
sX
(~pX)σ

iχs(~p) ,

(2.16)

ū(pX , sX)σ
ijqju(p, s) = − 1

2
√
EEX

ǫijkqjχ
†
sX
(~pX)

[
fXfσk − 1

fXf
(p+ q)apbσaσkσb

]
χs(~p)

= − 1

2
√
EEX

(
f

fX

)
ǫijkqj

[
EX +mBX

− sXs|~pX ||~p|
E +mB

]
χ†
sX
(~pX)σkχs(~p) .

(2.17)
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The Breit frame. The Breit frame is characterized by the condition EX = E which means

that the photon has zero energy (q0 = 0). As shown in the appendix, choosing the photon
in the z axis, the the photon and baryon momenta in the Breit frame take the form

qµ = (0, 0, 0, q) , pµ = (E, 0, 0, p3) , pµX = pµ + qµ ,

p3 = − q

2x
, E =

√
m2

B + p23 . (2.18)

Using eq. (2.7) and the spinor relations (2.14) - (2.17) we can work out the components of
the current matrix elements. In the Breit frame the current matrix elements simplify to

〈pX , BX , sX , I
X
3 |J0,a

V (0)|p, B, s, I3〉 =
1

2(2π)3
(τa)IX3 I3 χ

†
sX
(~pX)χs(~p)

×
[
αFD,a

BBX
(q2)− β q2κBF

P,a
BBX

(q2)
]
, (2.19)

〈pX , BX , sX , I
X
3 |J i,a

V (0)|p, B, s, I3〉 = − i

2(2π)3
(τa)IX3 I3ǫ

ijkqj χ
†
sX
(~pX)σkχs(~p)

×
[
βFD,a

BBX
(q2) + ακBF

P,a
BBX

(q2)
]
, (2.20)

where

α =

(
1

2E

)( √
E +mB√
E +mBX

)
[E +mBX

+ (E −mB)(1− 2x)] ,

β =

(
1

2E

)( √
E +mB√
E +mBX

)(
1

2x

)[
E +mBX

E +mB
+ 2x− 1

]
,

E =

√
m2

B +
q2

4x2
. (2.21)

To get (2.19) and (2.20), the following identity proved useful,

sχ†
sX
(~pX)σ

iχs(~p) = −δi3χ†
sX
(~pX)χs(~p)− iǫi3kχ†

sX
(~pX)σ

kχs(~p) , (2.22)

which is valid in the Breit frame only.
Note that in the elastic case mBX

= mB, fX = f and κB = 1/(2mB) so we obtain

〈pX , BX , sX , I
X
3 |J0,a

V (0)|p, B, s, I3〉 =
1

2(2π)3
(τa)IX3 I3

(mB

E

)
χ†
sX
(~pX)χs(~p)G

E,a
B (q2) ,

〈pX , BX , sX , I
X
3 |J i,a

V (0)|p, B, s, I3〉 = − 1

2(2π)3
(τa)IX3 I3

(
i

2E

)
ǫijkqj χ

†
sX
(~pX)σkχs(~p)G

M,a
B (q2) ,

(2.23)

where

GE,a
B (q2) = FD,a

B (q2)− q2

4m2
B

F P,a
B (q2) , GM,a

B (q2) = FD,a
B (q2) + F P,a

B (q2) , (2.24)

are the elastic electric and magnetic form factors also known as the Sachs form factors.
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Figure 1: Exemplary diagram for a deep inelastic scatter-
ing process. A lepton ℓ exchanges a virtual photon with a
hadron of momentum p.

2.2. Deep Inelastic Scattering and the proton structure functions

Deep inelastic scattering (DIS) is a primary tool to investigate the internal structure of
hadrons. DIS refers to the scattering process of a lepton on a hadron. The lepton interacts
with a hadron of momentum pµ via a virtual photon of momentum qµ (cf. figure 1). The
final hadronic state is denoted by X and momentum pµX . Such a process is commonly

parametrized by two dynamical variables, namely the Bjorken parameter x = − q2

2p·q and

the photon virtuality q2 (for a review of DIS, see e.g., [40]). The standard limit in DIS
corresponds to the Bjorken limit of large q2 and fixed x. In this paper we are interested in
the regime of small q2 where non-perturbative contributions are relevant.

The DIS differential cross section is determined by the hadronic tensor,

W µν =
1

8π

∑

s

∫
d4x eiq·x〈p, s|

[
J µ(x),J ν(0)

]
|p, s〉, (2.25)

where J µ(x) is the electromagnetic current. Inserting the sum of the final states X we can
write the hadronic tensor as

W µν =
1

8π

∑

s

∑

X

(2π)4δ4(p+ q − pX)〈p, s|J µ(0)|X〉〈X|J ν(0)|p, s〉 . (2.26)

The structure functions F1(x, q
2) and F2(x, q

2) are Lorentz invariant scalars that appear in
the decomposition of the hadronic tensor :

W µν = F1(x, q
2)
(
ηµν − qµqν

q2

)
+

2x

q2
F2(x, q

2)
(
pµ +

qµ

2x

)(
pν +

qν

2x

)
. (2.27)

2.2.1. The contribution from resonance production

First of all we need to transform the spinors and baryon states of the previous section as

u(p, s) → 1√
2E

u(p, s) , |p, B, s〉 → 1√
2E(2π)3/2

|p, B, s〉 , (2.28)
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in order to get the standard relativistic normalizations

ū(p, s)u(p, s) = 2mB , 〈pX , BX , SX |p, B, s〉 = 2
√
EEX(2π)

3δ3(~pX − ~p)δsXs . (2.29)

Using (2.1), (2.7) and (2.28) we obtain for I3 = IX3 = 1/2,

〈pX , BX , sX |J µ(0)|p, B, s〉 = i

(
ηµν − qµqν

q2

)
ū(pX , sX)

[
γνF

D
BBX

(q2)

+κBσνλq
λF P

BBX
(q2)

]
u(p, s) , (2.30)

where

FD
BBX

(q2) =
1

2

∑

a

caF
D,a
BBX

(q2) , F P
BBX

(q2) =
1

2

∑

a

caF
P,a
BBX

(q2) , (2.31)

are the Dirac and Pauli electromagnetic form factors.
The baryonic tensor for a spin 1/2 baryon in the case where one particle is produced in the
final state can be written as

W µν =
1

8π

∑

s,sX

∑

mBX

∫
d4pX
(2π)3

θ(p0X)δ(p
2
X +m2

BX
)

×(2π)4δ4(p+ q − pX)〈p, B, s|J µ(0)|pX , BX , sX〉〈pX , BX , sX |J ν(0)|p, B〉

=
1

4

∑

s,sX

∑

mBX

δ
[
(p+ q)2 +m2

BX

]
〈p, B, s|J µ(0)|pX, BX , sX〉〈pX, BX , sX |J ν(0)|p, B, s〉 .

(2.32)

Substituting (2.30) into (2.32) we obtain

W µν = −1

4

∑

mBX

δ
[
(p+ q)2 +m2

BX

](
ηµρ − qµqρ

q2

)(
ηνσ − qνqσ

q2

)

×
[
FD
BBX

(q2)FD
BBX

(q2)Aρσ + F P
BBX

(q2)F P
BBX

(q2)Bρσ

+F P
BBX

(q2)FD
BBX

(q2)Cρσ + FD
BBX

(q2)F P
BBX

(q2)Dρσ

]
, (2.33)

where

Aρσ = −pτ (p+ q)τ̄ tr(γτγργτ̄γσ) +mBmBX
tr(γργσ)

= 4
{
[mBmBX

+ p · (p+ q)] ηρσ − 2pρpσ − pρqσ − pσqρ

}
,

= 4
{[

mBmBX
+ p2 − q2

2x

]
ηρσ − 2pρpσ − pρqσ − pσqρ

}
, (2.34)

Bρσ = −κ2Bqλqλ̄ [mBmBX
tr(σλρσλ̄σ)− pτ (p+ q)τ̄ tr(σλργτ̄σλ̄σγτ)]
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= 4κ2Bq
2
{[

−mBmBX
+ p2 +

q2

2x

(
1− 1

x

)]
ηρσ − 2pρpσ

− 1

x
(qρpσ + qσpρ) +

[
mBmBX

− p2 − q2

2x

]
qρqσ
q2

}
, (2.35)

Cρσ = −iκBqλ [mB(p+ q)τ tr(σλργτγσ) +mBX
pτ tr(σλργσγτ )]

= 4κB

{
[−mB(p+ q) · q +mBX

p · q] ηρσ + [mB(p+ q)ρ −mBX
pσ] qσ

}

= 4κBq
2
{
−
[
mB +

1

2x
(mBX

−mB)

]
ηρσ + [mBqρ + (mB −mBX

)pρ]
qσ
q2

}
,(2.36)

and

Dρσ = iκBq
λ [mB(p+ q)τ tr(σλσγργτ ) +mBX

pτ tr(σλσγτγρ)]
= Cσρ , (2.37)

and we used the sum over spin formula

∑

s

u(p, s)ū(p, s) = −iγµpµ +mB , (2.38)

and the gamma trace identities

tr(γµγν) = +4ηµν ,
tr(γµγνγργσ) = +4(ηµνηρσ − ηµρηνσ + ηµσηνρ) ≡ 4η̃µνρσ ,

tr(γµγνγργσγλγτ ) = +4
[
ηµν η̃ρσλτ − ηµρη̃νσλτ + ηµσ η̃νρλτ − ηµλη̃νρστ + ηµτ η̃νρσλ

]
,

tr(σµνγργσ) = − tr(σµνγργσ) = 4i(−ηµρηνσ + ηµσηνρ) ,
tr(σµνσρσ) = −4(−ηµρηνσ + ηµσηνρ) ,

tr(σµνγρσσλστ ) = −4
[
− ηµρ(ηνσηλτ − ηνληστ ) + ηµση̃νρλτ − ηµλη̃νρστ

+ηµτ (−ηνσηρλ + ηνληρσ)
]
. (2.39)

Note that the terms with qρ or qσ will vanish when contracting with the transverse tensors.
Using (2.34),(2.35),(2.36),(2.37) in (2.33) we obtain the baryonic tensor

W µν =

(
ηµν − qµqν

q2

)
F1(q

2, x) +

(
pµ +

qµ

2x

)(
pν +

qν

2x

)
2x

q2
F2(q

2, x) , (2.40)

in terms of the structure functions

F1(q
2, x) =

∑

mBX

δ
[
(p+ q)2 +m2

BX

] { [
−mB(mBX

−mB) +
q2

2x

]
(FD

BBX
(q2, x))2

+

[
mB(mBX

+mB) +
q2

2x

(
1

x
− 1

)]
κ2B q

2(F P
BBX

(q2))2

+ 2

[
mB +

1

2x
(mBX

−mB)

]
κB q

2F P
BBX

(q2)FD
BBX

(q2)
}
, (2.41)
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and

F2(q
2, x) =

(
q2

x

)∑

mBX

δ
[
(p+ q)2 +m2

BX

]

×
[
(FD

BBX
(q2))2 + κ2Bq

2(F P
BBX

(q2))2
]
. (2.42)

Interestingly, we can rewrite F1(q
2, x) as a binomial squared, i.e.,

F1(q
2, x) =

∑

mBX

δ
[
(p+ q)2 +m2

BX

]
ζ2
[
FD
BBX

(q2, x) + F P
BBX

(q2, x)
]2
, (2.43)

where

ζ = q (mB +mBX
)−1/2

[
mB +

1

2x
(mBX

−mB)

]1/2
. (2.44)

Note that in the elastic case ζ = q/
√
2 and κB = 1/(2mB) so that the structure functions

reduce to

F1(q
2, x) =

(
q2

2

)
δ
(
q2 + 2p · q

) [
FD
BB(q

2) + F P
BB(q

2)
]2
,

F2(q
2, x) = q2δ

(
q2 + 2p · q

) [
(FD

BB(q
2))2 +

q2

4m2
B

(F P
BB(q

2))2
]
. (2.45)

2.2.2. The helicity amplitudes

It is interesting to compare the result that we have obtained for the structure functions with
the standard result in terms of the helicity amplitudes [41]

F1(q
2, x) =

∑

mBX

δ
[
(p+ q)2 +m2

BX

]
m2

B(G
+
BBX

(q2))2

F2(q
2, x) =

∑

mBX

δ
[
(p+ q)2 +m2

BX

]( q2
2x

)(
1 +

q2

4m2
Bx

2

)−1

×
[
(G+

BBX
(q2))2 + 2(G0

BBX
(q2))2

]
. (2.46)

The helicity amplitudes G+
BBX

(q2) and G0
BBX

(q2) describe transitions when the initial state is
a proton and the final state is a baryon of the same spin but different helicities. The amplitude
G+ (G0) corresponds to a final baryon with helicity 1/2 (−1/2) and spin polarization −1/2
(−1/2).
Comparing (2.46) with our results for the structure functions we get the interesting relations

(G+
BBX

(q2))2 =

[
ζ

mB
(FD

BB(q
2) + F P

BB(q
2))

]2
,

(G0
BBX

(q2))2 =

(
1 +

q2

4m2
Bx

2
− ζ2

2m2
B

)
(FD

BB(q
2))2 +

(
1 +

q2

4m2
Bx

2
− ζ2

2m2
Bκ

2
Bq

2

)
κ2Bq

2(F P
BB(q

2))2

− ζ2

m2
B

FD
BB(q

2)F P
BB(q

2) . (2.47)
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3. Holographic baryons in the Sakai-Sugimoto model

As pointed out in the introduction, the Sakai-Sugimoto model provides new insight into the
problem of hadronic scattering in the non-perturbative regime. Moreover, baryons have been
successfully incorporated into this model by several groups [42,21,43,22]. This development
was inspired by the Skyrme model [44] and Witten’s original proposal of baryon vertices [45].
In this section we briefly review the Sakai-Sugimoto model and describe the construction of
holographic baryons.

3.1. Review of the model

The Sakai-Sugimoto model is based on a configuration of Nc D4 branes and Nf D8-D8 branes
in the limit of large Nc with fixed Nf . This limit allows a supergravity description and can
be interpreted as the quenching limit in QCD. The Sakai-Sugimoto model is the first string
model that realizes confinement and chiral symmetry breaking. Below we describe this model
in some detail.

Consider a set of Nc coincident D4-branes with a compact spatial direction in type IIA
supergravity [46]. The D4-branes generate a background with the following metric, dilaton
and four-form:

ds2 =
u3/2

R3/2

[
ηµνdx

µdxν + f(u)dτ 2
]
+
R3/2

u3/2
du2

f(u)
+R3/2u1/2dΩ2

4 ,

f(u) = 1− u3∗
u3

, eφ = gs
u3/4

R3/4
, F4 =

(2πls)
3Nc

VS4

ǫ4 , (3.1)

where u∗ is the tip of the cigar geometry generated by the D4 branes and R = (πgsNc)
1/3

√
α′.

The τ coordinate is compact and in order to avoid conical singularities the τ period is fixed
as

δτ =
4π

3

R3/2

u
1/2
∗

. (3.2)

As a consequence, we get a 4-d effective mass scale

M∗ =
2π

δτ
=

3

2

u
1/2
∗

R3/2
. (3.3)

The τ compactification is introduced as a mechanism of supersymmetry breaking and con-
finement. Imposing anti-periodic conditions for the fermionic states we get at low energies
a four-dimensional non-supersymmetric strongly coupled U(Nc) theory at large Nc with ’t
Hooft constant given by

λ = g2YMNc = (2πM∗) gsNc ls . (3.4)

It is convenient to define a pair of dimensionless coordinates y and z defined by the relations

u = u∗
(
1 + y2 + z2

)1/3 ≡ u∗K
1/3
y,z , τ =

δτ

2π
arctan

(
z

y

)
. (3.5)
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In terms of these coordinates the metric takes the form

ds2 = u3/2∗ R−3/2K1/2
y,z ηµνdx

µdxν +
4

9
R3/2u1/2∗

K
−5/6
y,z

y2 + z2

[
(z2 + y2K1/3

y,z )dz
2

+ (y2 + z2K1/3
y,z )dy

2 + 2yz(1−K1/3
y,z )dydz

]
+R3/2u1/2∗ K1/6

y,z dΩ
2
4 . (3.6)

Now consider Nf coincident D8-D8 probe branes living in the background generated by
the Nc D4-branes. The probe approximation is guaranteed by the condition Nf ≪ Nc. The
Nf D8 branes introduce quark degrees of freedom as fundamental strings extending from the
D4 branes to the D8 branes. The dynamics of the D8 and D8 branes is dictated by the DBI
action. It turns out that the solution to the DBI equations smoothly merges the D8 and D8
branes in the infrared region (small u). This is a geometrical realization of chiral symmetry
breaking U(Nf )×U(Nf ) → U(Nf ). In the simplest case the solution is just y = 0 (antipodal
solution) and the induced D8-D8 metric takes the form,

dsD8 = u3/2∗ R−3/2K1/2
z ηµνdx

µdxν +
4

9
R3/2u1/2∗ K−5/6

z dz2 +R3/2u1/2∗ K1/6
z dΩ2

4 , (3.7)

where Kz = 1 + z2. Considering small gauge field fluctuations Aµ,Az depending only in xµ

and z directions the action of the D8-D8 branes reduces to a five-dimensional U(Nf ) Yang
Mills-Chern Simons (YM-CS) action in a curved background. The action of the model reads

S = SYM + SCS ,

SYM = −κ
∫
d4xdz tr

[
1

2
K−1/3

z ηµρηνσFµνFρσ +M2
∗ Kzη

µνFµzFνz

]
,

SCS =
Nc

24π2

∫

M4×R

tr

(
AF2 − i

2
A3F − 1

10
A5

)
. (3.8)

where κ = λNc/(216π
3). Here, µ, ν = 0, 1, 2, 3 are four-dimensional Lorentz indices, and

z corresponds to the fifth dimension. The quantity A = Aαdx
α = Aµdx

µ + Azdz (α =
0, 1, 2, 3, z) is the five-dimensional U(Nf ) gauge field and F = 1

2
Fαβdx

α∧dxβ = dA+ iA∧A
is its field strength.

3.2. Vector meson dominance

The gauge field Aµ(x, z) can be expanded, in the Az = 0 gauge, as

Aµ(x, z) = V̂µ(x) + Âµ(x)ψ0(z) +

∞∑

n=1

[
vnµ(x)ψ2n−1(z) + anµ(x)ψ2n(z)

]
, (3.9)

where

V̂µ(x) =
1

2
U−1

[
AL

µ + ∂µ
]
U +

1

2
U
[
AR

µ + ∂µ
]
U−1 ,

Âµ(x) =
1

2
U−1

[
AL

µ + ∂µ
]
U − 1

2
U
[
AR

µ + ∂µ
]
U−1 ,
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U(x) = e
iπ(x)
fπ , AL(R)

µ (x) = AV
µ (x)±AA

µ (x) , (3.10)

and the ψn(z) modes satisfy

κ

∫
dz K−1/3

z ψn(z)ψm(z) = δnm , −K1/3
z ∂z [Kz∂zψn(z)] = λn ψn(z) . (3.11)

Using the Kaluza-Klein expansion (3.9) and integrating the z coordinate we get a four-
dimensional effective lagrangian of mesons and external U(1) fields. The vector (axial vector)
mesons are represented by the fields vnµ(x) (anµ(x)) and correspond to the modes ψ2n−1(z)
(ψ2n(z)). The pion is represented by the field π(x) and corresponds to the mode ψ0(z). In
addition, we have external U(1) vector (axial) fields represented by AV

µ (AA
µ ).

In order to have a diagonal kinetic term, the vector mesons are redefined as ṽnµ = vnµ +
(gvn/M

2
vn)Vµ and the quadratic terms in the vector sector take the form [11] :

L2 =
1

2

∑

n

[
Tr
(
∂µṽ

n
ν − ∂ν ṽ

n
µ

)2
+ 2M2

vnTr

(
ṽnµ − gvn

M2
vn
Vµ

)2
]
,

where

M2
vn = λ2n−1M

2
∗ , gvn = κM2

vn

∫
dz K−1/3

z ψ2n−1(z) .

The mixed term gvn ṽ
n
µVµ represents the decay of the photon into vector mesons which is a

holographic realization of vector meson dominance.

3.3. Holographic baryons

We restrict ourselves to the case Nf = 2. The U(2) gauge field A can be decomposed as

A = A+ Â
12

2
= Ai τ

i

2
+ Â

12

2
=

3∑

a=0

Aa τ
a

2
, (3.12)

where τ i (i = 1, 2, 3) are Pauli matrices and τ 0 = 12 is a unit matrix of dimension 2. Thus,
the equations of motion are given by

−κ
(
K−1/3

z ∂νF̂
µν + ∂z(KzF̂

µz)
)
+

Nc

128π2
ǫµα2...α5

(
F a
α2α3

F a
α4α5

+ F̂α2α3F̂α4α5

)
= 0,

−κ
(
K−1/3

z ∇νF
µν +∇z(KzF

µz)
)a

+
Nc

64π2
ǫµα2...α5F a

α2α3
F̂α4α5 = 0,

−κKz∂νF̂
zν +

Nc

128π2
ǫzµ2...µ5

(
F a
µ2µ3

F a
µ4µ5

+ F̂µ2µ3F̂µ4µ5

)
= 0,

−κKz (∇νF
zν)a +

Nc

64π2
ǫzµ2...µ5F a

µ2µ3
F̂µ4µ5 = 0,

where ∇α = ∂α+ iAα is the covariant derivative. The baryon in this model corresponds to a
soliton with a nontrivial instanton number in the four-dimensional space parameterized by
xM (M = 1, 2, 3, z). The instanton number is interpreted as the baryon number NB, where

NB =
1

64π2

∫
d3xdz ǫM1M2M3M4F

a
M1M2

F a
M3M4

. (3.13)
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The equations of motion are complicated nonlinear differential equations in a curved space-
time, so it is difficult to find a general analytic solution corresponding to the baryons.

3.3.1. Classical solution

Since we are working in the large λ regime, we can employ a 1/λ expansion. It can be
easily observed that SCS will be subleading compared to SYM, and therefore the leading
contribution to the instanton mass comes from the YM action. As it turns out [42], it is
possible to focus on a small region around the center of the instanton at z = 0 (because
the instanton size will scale as λ−1/2), where the warp factor Kz is approximately 1. The
corresponding field equations will be solved by a BPST instanton with infinitesimal size
ρ → 0. As explained in [42], including the contributions to the field equations from the

CS term will induce a non-vanishing U(1) electric field Â0 and will stabilize the size of the
instanton (determined by the minimum of the effective potential for ρ) at a finite value. The
classical solution near z = 0 corresponds to a static baryon configuration and is given by

Acl
M =− if(ξ)g∂Mg

−1 , Âcl
0 =

Nc

8π2κ

1

ξ2

[
1− ρ4

(ρ2 + ξ2)2

]
, A0 = ÂM = 0. (3.14)

with the definitions

f(ξ) =
ξ2

ξ2 + ρ2
, g(x) =

(z − Z)− i(~x− ~X) · ~τ
ξ

, ξ =

√
(z − Z)2 + |~x− ~X|2, (3.15)

where XM = (X1, X2, X3, Z) = ( ~X, Z) determines the position in the spatial R4 direction.
The effective potential for ρ and Z can be calculated by taking into account the nontrivial
z-dependence of the background (through Kz) at order λ

−1 and reads

Veff(ρ, Z) =M0

(
1 +

ρ2

6
+

N2
c

5M2
0

1

ρ2
+
Z2

3

)
, (3.16)

where M0 = 8π2κM∗ is the minimal (groundstate) mass of the baryons. The effective
potential is minimized at

ρ2cl =
Nc

M0

√
6

5
, Zcl = 0. (3.17)

3.3.2. Quantization

The quantization of the solitons is facilitated by employing the moduli space approximation
method to study a quantum mechanical problem on the instanton moduli space. For a more
detailled discussion, the interested reader is referred to refs. [42,22]. Here we merely present
the results for the wavefunctions and energies of the lowest excited baryon states in the
slowly moving (pseudo-) moduli approximation. These (pseudo-) moduli are:

X i(t) , Z(t) , ρ(t) , aI(t) , (3.18)

where X i and Z represent the center-of-mass position of the soliton, while ρ is the size of the
soliton (instanton-like in the SU(2) sector) and aI (I = 1, 2, 3, 4) determines the orientation
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of the instanton in the SU(2) group space, with the condition (aI)2 = 1. The SU(2) gauge
field takes the form

AM = V Acl
MV

−1 − iV ∂MV
−1 , (3.19)

where Acl
M is given by eq. (3.14) and V satisfies the Gauss law constraint

− iV −1V̇ = −ẊMAcl
M + χaf(ξ)g

τa

2
g−1 , (3.20)

with

χa = −i tr(τaa−1ȧ) , a = a4 + iaaτ
a . (3.21)

Inserting (3.19) into the effective action we get the Lagrangian of collective motion of the
soliton

L =
M0

2
( ~̇X2 + Ż2) +M0

4∑

I=1

˙(ρaI) ˙(ρaI)− Veff(ρ, Z) . (3.22)

Quantizing this system we find the baryon wavefunctions as eigenstates of the Hamiltonian.
The relevant quantum numbers are B = (l, I3, nρ, nz) and its spin s. For example, baryon
wavefunctions with Bn = (1,+1/2, 0, n) can be written as

|Bn ↑ 〉 ∝ R(ρ)ψBn
(Z)(a1 + ia2) , (3.23)

where

R(ρ) = ρ−1+2
√

1+N2
c /5e

−M0√
6
ρ2
,

ΨBn
(Z) =

(
(2M0)

1/4

61/8 π1/4 2n/2
√
n!

)
Hn(

√
2M06

−1/4Z)e
−M0√

6
Z2

. (3.24)

The baryon masses can be easily gleaned from the relevant Hamiltonians and the resulting
mass formula reads,

M =M0 +

√
(ℓ+ 1)2

6
+

2

15
N2

c +
2(nρ + nz) + 2√

6
=: M̃0 +

2nz√
6
. (3.25)

One observation is in order: Since the photon couples to the baryons via vector mesons as
a direct consequence of vector meson dominance and since the vector meson wavefunctions
only depend on the coordinate z, it is clear that the intial and final state baryons must have
the same ρ quantum number due to orthonormality, while they may differ in the z quantum
number, due to the additional contribution from the vector mesons to the relevant coupling
constants etc.
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3.3.3. Extension of the soliton solution to large z

The classical solution (3.14) is valid only near z = 0. This solution can be extended to large
z as long as we require ρ ≪ ξ which is the condition of small size for the skyrmion. Under
this condition the equations of motion linearize and the solutions can be found by defining
Green’s functions corresponding to the curved space generated by Kz :

G(~x, z, ~X, Z) = κ
∞∑

n=1

ψn(z)ψn(Z)Yn(|~x− ~X|)

H(~x, z, ~X, Z) = κ

∞∑

n=0

φn(z)φn(Z)Yn(|~x− ~X|) , (3.26)

where ψn(z) is the complete set of vector meson eigenfunctions, and φn(z) is another set
defined by

φ0(z) =
1√
κπKz

, φn(z) =
1√
λn
∂zψn(z) (n = 1, 2, . . . ) , (3.27)

and Yn(r) is the Yukawa potential

Yn(r) = − 1

4π

e−
√
λnr

r
. (3.28)

The gauge field solutions found in [22] for the case ρ≪ ξ can be written as

Â0 = −Nc

2κ
G(~x, z, ~X, Z) ,

Âi =
Nc

2κ

{
Ẋ i +

ρ2

2

[
χa

2

(
ǫiaj

∂

∂Xj
− δia

∂

∂Z

)
+
ρ̇

ρ

∂

∂X i

]}
G(~x, z, ~X, Z) ,

Âz =
Nc

2κ

[
Ż +

ρ2

2

(
χa

2

∂

∂Xa
+
ρ̇

ρ

∂

∂Z

)]
H(~x, z, ~X, Z) ,

AΛ
0 = 2π2ρ2

{
2i a ȧ−1 + 2π2ρ2aτaa−1

[
Ẋ i

(
ǫiaj

∂

∂Xj
− δia

∂

∂Z

)
+ Ż

∂

∂Xa

]}
G(~x, z, ~X, Z) ,

AΛ
i = −2π2ρ2aτaa−1

(
ǫiaj

∂

∂Xj
− δia

∂

∂Z

)
G(~x, z, ~X, Z) ,

AΛ
z = −2π2ρ2aτaa−1 ∂

∂Xa
H(~x, z, ~X, Z) , (3.29)

where

AΛ
α = ΛAαΛ

−1 − iΛ∂αΛ , Λ = ag−1V −1 . (3.30)

4. Generalized baryon form factors in the Sakai-Sugimoto model

Now we are going to extract the generalized Dirac and Pauli form factors by comparing the
matrix element of the vectorial current in (2.7) with the one that can be obtained from the
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Sakai-Sugimoto model. The latter, denoted here by Jµ,a
V (SS), can be gleaned from holography

as [22]

Jµ,a
V (SS) = −κ

{
lim
z→∞

[
KzF cl

µz

]
+ lim

z→−∞

[
KzF cl

µz

] }
, (4.1)

where F cl
µz is the field strength associated with the classical field (3.29). When comparing the

vectorial current of (2.7) with the one in the Sakai-Sugimoto model we will use the following
prescription

ηµ〈pX , BX , sX |Jµ,a
V (0)|p, B, s〉 = ηµ〈pX , BX , sX |Jµ,a

V (SS)(0)|p, B, s〉 (4.2)

where ηµ = (η0, ~η) is the polarization of the photon and we choose to work with transverse
photons satisfying the relation ηµq

µ = 0 in order to avoid the discussion of current anomalies.

4.1. Electromagnetic currents in the Sakai-Sugimoto model

Using (3.29) and (4.1) we get the holographic currents in the Sakai-Sugimoto model [22] :

J0,0
V (SS)(x) =

Nc

2
GV ,

J i,0
V (SS)(x) = −Nc

2

{
Ż∂iHV − Ẋ iGV − Sa

16π2κ

[
(∂i∂a − δia∂2)HV + ǫija∂jGV

] }
,

J0,c
V (SS)(x) = 2π2κ

{
ρ2 tr[τ c∂0(aτ

aa−1)]∂aHV +
Ic

2π2κ
GV

− ρ2 tr[τ caτaa−1]Ẋ i
[
(∂a∂i − δia∂

2)HV + ǫija∂jGV

] }
,

J i,c
V (SS)(x) = −2π2κρ2 tr[τ caτaa

−1]
[
(∂i∂a − δia∂2)HV + ǫija∂jGV

]
, (4.3)

where

GV = −
∑

n

gvnψ2n−1(Z)Y2n−1(|~x− ~X|) ,

HV = −
∑

n

gvn

λ2n−1
∂Zψ2n−1(Z)Y2n−1(|~x− ~X|) ,

Ż = − i

M0

∂Z =
PZ

M0

, Ẋ i = − i

M0

∂

∂X i
=

P i

M0

, (4.4)

and

Sa = 4π2κρ2χa = −i4π2κρ2 tr(τaa−1ȧ) , Ia = −i4π2κρ2 tr(τaaȧ−1) , (4.5)

are the spin and isospin operators. Note that

Ż(∂iHV )− Ẋ iGV =
1

M0

[
(∂iHV )PZ −GV P

i
]
. (4.6)

Here we used the relation ∂ZHV = −GV .
Defining the Fourier transform as

J̃µ,a
V (SS)(

~k) =

∫
d3~xe−i~k·xJµ,a

V (SS)(x) , (4.7)
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and using the identity

∫
d3~xe−i~k·xY2n−1(|~x− ~X|) = − e−i~k· ~X

~k2 + λ2n−1

, (4.8)

we find

J̃0,0
V (SS)(

~k) =
Nc

2
e−i~k· ~X

∑

n

gvnψ2n−1(Z)

~k2 + λ2n−1

, (4.9)

J̃ i,0
V (SS)(

~k) =
Nc

2
e−i~k· ~X

{∑

n

gvnψ2n−1(Z)

~k2 + λ2n−1

[
P i

M0
+

i

16π2κ
ǫijakjSa

]

−
∑

n

gvn∂Zψ2n−1(Z)

λ2n−1(~k2 + λ2n−1)

[
ki

M0

∂Z +
1

16π2κ
(kika − ~k2δia)Sa

]}
, (4.10)

J̃0,c
V (SS)(

~k) = 2π2κ e−i~k· ~X
{∑

n

gvnψ2n−1(Z)

~k2 + λ2n−1

[
Ic

2π2κ
− i

M0

ǫijaPikjρ
2 tr(τ caτaa

−1)

]

+
∑

n

gvn∂Zψ2n−1(Z)

λ2n−1(~k2 + λ2n−1)

[
ikiρ

2 tr[τ c∂0(aτ
ia−1)] +

1

M0
(~P · ~kki − ~k2Pi)ρ

2 tr[τ caτ ia−1]

]}
,

(4.11)

J̃ i,c
V (SS)(

~k) = 2π2κ e−i~k· ~X
[
− i
∑

n

gvnψ2n−1(Z)

~k2 + λ2n−1

ǫijakj

+
∑

n

gvn∂Zψ2n−1(Z)

λ2n−1(~k2 + λ2n−1)
(kika − ~k2δia)

]
ρ2 tr(τ caτaa

−1) . (4.12)

Note that one term arising from Ż cancels with another from Ẋ i and we have used the
relation ∂2Zψn(Z) ≈ −λnψn(Z). Now we calculate the expectation values of the Sakai-
Sugimoto currents :

〈pX , BX , sX |Jµ,a
V (SS)(0)|p, B, s〉 =

∫
d3~k

(2π)3
〈pX , BX , sX |J̃µ,a

V (SS)(
~k)|p, B, s〉 . (4.13)

We define the baryon states as

|~p, B, s, I3〉 =
1

(2π)3/2
ei~p·

~X |nB〉|nρ〉|s, I3〉R ,

|~pX , BX , sX , I
X
3 〉 =

1

(2π)3/2
ei~pX · ~X |nBX

〉|nρ〉|sX , IX3 〉R . (4.14)

Here we make use of the results and definitions of a recent publication [58], in which a
relativistic generalization of baryon states and wavefunctions was discussed in detail. In
particular, the spin and isospin part was defined as

|s, I3〉R =
1√
2E

(
f |s, I3〉
s|~p|
f

|s, I3〉

)
,

18



〈sX , IX3 |R =
1√
2EX

(
fX 〈sX , IX3 | − sX |~pX |

fX
〈sX , IX3 |

)
, (4.15)

where |s, I3〉 and 〈sX , IX3 | are the non-relativistic initial and final states associated with the
spin and isospin operators. Evaluating the currents in these states we get

〈J0,0
V (SS)(0)〉 =

1

(2π)3
Nc

2
〈sX , IX3 |s, I3〉RF 1

BBX
(~q2) , (4.16)

〈J i,0
V (SS)(0)〉 =

1

(2π)3
Nc

2
〈sX , IX3 |R

{
F 1
BBX

(~q2)

[
pi

M0

− i

16π2κ
ǫijaqjSa

]

+
qi

M0
F 3
BBX

(~q2)− 1

16π2κ
F 2
BBX

(~q2)(qiqa − ~q2δia)Sa

}
|s, I3〉R , (4.17)

〈J0,c
V (SS)(0)〉 = 2π2κ

1

(2π)3
〈nρ|〈sX, IX3 |R

{
F 1
BBX

(~q2)

[
Ic

2π2κ
+

i

M0
ǫijapiqjρ

2 tr(τ caτaa
−1)

]

+ F 2
BBX

(~q2)
[
− iqiρ

2 tr[τ c∂0(aτ
ia−1)]

+
1

M0
(~P · ~qqi − ~q2Pi)ρ

2 tr[τ caτ ia−1]
]}

|nρ〉|s, I3〉R , (4.18)

〈J i,c
V (SS)(0)〉 = 2π2κ

1

(2π)3

[
iF 1

BBX
(~q2)ǫijaqj + F 2

BBX
(~q2)(qiqa − ~q2δia)

]

× 〈nρ|ρ2|nρ〉〈sX , IX3 |R tr(τ caτaa
−1)|s, I3〉R . (4.19)

where

F 1
BBX

(~q2) =
∑

n

gvn〈nBX
|ψ2n−1(Z)|nB〉

~q2 + λ2n−1

F 2
BBX

(~q2) =
∑

n

gvn〈nBX
|∂Zψ2n−1(Z)|nB〉

λ2n−1(~q2 + λ2n−1)

F 3
BBX

(~q2) =
∑

n

gvn〈nBX
|∂Zψ2n−1(Z)∂Z |nB〉

λ2n−1(~q2 + λ2n−1)
, (4.20)

the momentum ~q is the photon momentum defined by ~q = ~pX − ~p and we have used

〈~pX |e−i~k· ~X |~p〉 = δ3(~k − ~p+ ~pX) . (4.21)

The following relations are very useful and are presented here for completeness,

〈sX , IX3 |s, I3〉R =
1

2
√
EXE

(ffX − ssX |p||~pX |
ffX

) δIX3 Iχ
†
sX
( ~pX)χs(~p) ,

〈sX , IX3 |R tr(τ caτ−1
a a)|s, I3〉R = − 1

3
√
EXE

(ffX − ssX |p||~pX |
ffX

) τ cIX3 I3
χ†
sX
( ~pX) σ

aχs(~p) ,
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〈sX , IX3 |R Ic |s, I3〉R =
1

4
√
EXE

(ffX − ssX |p||~pX |
ffX

) (τ c)IX3 Iχ
†
sX
( ~pX)χs(~p) ,

〈sX , IX3 |R Sa |s, I3〉R =
1

4
√
EXE

(ffX − ssX |p||~pX |
ffX

) δIX3 Iχ
†
sX
( ~pX) σaχs(~p) ,

Positive parity resonances in the Breit frame. In the Breit frame we get for positive
parity resonances

〈J0,0
V (SS)(0)〉 =

Nc

2(2π)3
ξδIX3 Iχ

†
sX
( ~pX)χs(~p)F

1
BBX

(~q2) ,

〈J i,0
V (SS)(0)〉 =

Nc

2(2π)3M0
δIX3 Iχ

†
sX
( ~pX)

{
qi
[
F 3
BBX

(~q2)− 1

2x
F 1
BBX

(~q2)

]
ξ

− i

4
αǫijaqjσaF

1
BBX

(~q2)
}
χs(~p) ,

〈J0,c
V (SS)(0)〉 =

ξ

2(2π)3
(τ c)IX3 Iχ

†
sX
( ~pX)χs(~p)F

1
BBX

(~q2) ,

〈J i,c
V (SS)(0)〉 = −i α

2(2π)3

(
M0

3

)
(τ c)IX3 I〈nρ|ρ2|nρ〉 ǫijaqjχ†

sX
( ~pX)σaχs(~p)F

1
BBX

(~q2) ,(4.22)

where

ξ =

(
1

2E

)( √
E +mB√
E +mBX

)
[E +mBX

+ (E −mB)(2x− 1)] ,

(
M0

3

)
〈nρ|ρ2|nρ〉 =

1√
6M∗

[
1 + 2

√
1 +

N2
c

5

]
≡ gI=1

4mB
. (4.23)

and α is given in (2.21). We have also used the relation

(ffX − ssX |p||~pX |
ffX

) =
f

fX
[E +mBX

− ssX(E −mB)|2x− 1|] , (4.24)

and the identity (2.22) which are valid only in the Breit frame.

4.2. The generalized Dirac and Pauli form factors

Using the holographic prescription (4.2) we can compare, in the case of positive parity
baryons, the current matrix element of (2.19),(2.20) with the Sakai-Sugimoto current matrix
element in (4.22). As a consequence we get the Dirac and Pauli form factors

FD,0
BBX

(q2) =

[
ξα+ βα q2

4M0

α2 + β2q2

]
NcF

1
BBX

(q2) , (4.25)

F P,0
BBX

(q2) = − 1

κB

[
βξ − α2

4M0

α2 + β2q2

]
NcF

1
BBX

(q2) , (4.26)
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FD,3
BBX

(q2) =

[
ξα+ βαq2

(
M0

3

)
〈ρ2〉

α2 + β2q2

]
F 1
BBX

(q2) , (4.27)

F P,3
BBX

(q2) = − 1

κB

[
βξ − α2

(
M0

3

)
〈ρ2〉

α2 + β2q2

]
F 1
BBX

(q2) , (4.28)

where α and β are given in (2.21) and ξ is given in (4.23). Then the electromagnetic
Dirac and Pauli form factors read

FD
BBX

(q2) =
1

2

[
1

Nc
FD,0
BBX

(q2) + FD,3
BBX

(q2)

]
,

F P
BBX

(q2) =
1

2

[
1

Nc

F P,0
BBX

(q2) + F P,3
BBX

(q2)

]
. (4.29)

4.2.1. The non-relativistic (large λ) limit

First of all note that

mBX
= mB +

2√
6
nBX

M∗ , (4.30)

so that

x =
q2

q2 +
(
2mB + 2√

6
nBX

M∗

)(
2√
6
nBX

M∗

) . (4.31)

Elastic case. In the elastic case we have nBX
= 0, mBX

= mB and x = 1 so in the large λ
limit we find

− 1

κB

(
β − α

4M0

)
=

mB

2M0
− 1 +O

(
1

λNc

)
=
gI=0

2
− 1 +O

(
1

λNc

)
,

− 1

κB

[
β − α

(
M0

3

)
〈ρ2〉

]
=

gI=1

2

[
1 +O

(
1

λNc

)]
, (4.32)

so that

FD,0
BBX

(q2) =

[
1 +O

(
1

λ2N2
c

)]
NcF

1
BBX

(q2) , (4.33)

F P,0
BBX

(q2) =

[
gI=0

2
− 1 +O

(
1

λNc

)]
NcF

1
BBX

(q2) , (4.34)
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FD,3
BBX

(q2) =

[
1 +O

(
1

λ

)]
F 1
BBX

(q2) , (4.35)

F P,3
BBX

(q2) =
gI=1

2

[
1 +O

(
1

λNc

)]
F 1
BBX

(q2) , (4.36)

Non-elastic case. In the non-elastic case, we have nBX
= 2, 4, 6, . . ., so that in the large λ

limit we have

mB

E
=

(
1 +

q2

4x2m2
B

)−1/2

=

(
1 +

2

3

n2
BX
M2

∗
q2

)−1/2

∼ O(1) ,

ξα + βα
q2

4M0

=
mB

E
+O

(
1

λNc

)
,

− 1

κB

(
βξ − α2

4M0

)
=

mB

2M0
− mB

E
+O

(
1

λNc

)

=
gI=0

2
− mB

E
+O

(
1

λNc

)

ξα+ βαq2
(
M0

3

)
〈ρ2〉 =

mB

E
+O

(
1

λ

)
,

− 1

κB

[
βξ − α2

(
M0

3

)
〈ρ2〉

]
=

gI=1

2

[
1 +O

(
1

λNc

)]
. (4.37)

Thus, in the non-elastic case, we obtain in the large λ limit

FD,0
BBX

(q2) =

[
mB

E
+O

(
1

λNc

)]
NcF

1
BBX

(q2) , (4.38)

F P,0
BBX

(q2) =

[
gI=0

2
− mB

E
+O

(
1

λNc

)]
NcF

1
BBX

(q2) , (4.39)

FD,3
BBX

(q2) =

[
mB

E
+O

(
1

λ

)]
F 1
BBX

(q2) , (4.40)

F P,3
BBX

(q2) =
gI=1

2

[
1 +O

(
1

λNc

)]
F 1
BBX

(q2) . (4.41)

4.3. Numerical results

4.3.1. Baryon wavefunctions

Here, we present the results for some low-lying baryon wavefunctions in fig. 2. We restrict
our presentation to the parity even baryon wavefunctions n = 2j, because, as we shall
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see below, all coupling constants involving an even baryon state (e.g. the proton) and an
odd baryon state will yield zero. This follows directly from vector meson dominance and
the fact that vector meson wavefunctions are even.1 Furthermore, we are only considering
baryon states with (nρ)initial = (nρ)final, which is zero in the case of the proton; all other
possibilities will also produce vanishing results in the calculation of the form factors below.
Table 1 summarizes the mass spectrum for the proton B = (1,+1/2, 0, 0) and its excitations
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Figure 2: (Normalized) wave functions ΨB2k
(z) for the first six even baryon states.

BX = (1,+1/2, 0, nz). Note that we have chosen the proton mass mB0 = M̃0 = 940 MeV for
obvious phenomenological reasons, although strictly speaking the masses are all proportional
to Nc in the holographic limit Nc, λ→ ∞.2

1If one picks an odd parity initial baryon state, only odd excited baryon states would contribute to
non-vanishing coupling constants.

2As noted in [42], changing M∗ to a value of 500 MeV would result in a fairly realistic mass spectrum
for the excited baryon states, cf. their table (5.35). However, changing M∗ would alter the baryon wave
functions, vector meson decay constants, coupling constants and so forth. Therefore it is not permissible to
merely adapt the mass spectrum by changing M∗.
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n 0 1 2 3 4 5 6 7 8
mBn

/GeV 0.940 1.715 2.490 3.265 4.039 4.814 5.589 6.655 7.472

Table 1: Some numerical values for the masses of the excited baryon states connected to the
proton.

4.3.2. Baryon form factors

According to figure 1, we need to study the interaction of the baryons with (external) pho-
tons. This process is represented by the electromagnetic form factors. The Dirac and Pauli
form factors were discussed at length in section 2. Here we present our numerical results for
the generalized baryon form factors. The infinite sums over vector meson states appearing
in the mathematical description of form factors were approximated by including the first 60
(!) vector mesons states in the numerical computations. The wavefunctions ψ2k−1(z) of the
vector mesons were discussed at length in ref. [17].
Some numerical results for these quantities are listed in table 2. With these results we can

k 1 2 3 4 5 6 7 8 9
m2

vk

M2
∗

0.6693 2.874 6.591 11.80 18.49 26.67 36.34 47.49 60.14
g
vk√
κM2

∗
2.109 9.108 20.80 37.15 58.17 83.83 114.2 149.1 188.7

gvkB0B0
5.767 -2.610 0.1902 0.7664 -0.5162 -0.01955 0.2118 -0.08413 -0.05348

gvkB0B2
-0.9276 2.4670 -2.6239 1.0560 0.6404 -0.9990 0.2499 0.3848 -0.3049

gvkB0B4
0.3655 -1.2608 2.0708 -1.9409 0.6966 0.6716 -0.9855 0.2490 0.4558

gvkB0B6
-0.1871 0.7299 -1.4596 1.8556 -1.3815 0.1713 0.8448 -0.8371 0.03738

gvkB0B8
0.1091 -0.4595 1.0352 -1.5643 1.5657 -0.7918 -0.3319 0.9318 -0.5634

Table 2: Dimensionless squared masses and decay constants for vector mesons and coupling
constants between vector mesons and baryons.

now easily obtain the Dirac and Pauli form factors for the first few baryon states, as shown
in fig. 3. Observe that the form factors FD,P

B0B4
are negative definite. This is not problem-

atic since they will only appear in bilinear combinations in the derivation of the structure
functions below, so that the sign will not matter.
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Figure 3: Dirac and Pauli form factors FD,P
B0B2j

(q2) for the first four baryon states. The
elastic case corresponds to j = 0, while j > 0 yields the transitional form factors. For
j ≥ 4, the numerical errors become relatively large; we can only trust our results for approx.
q2 ≤ 5 (GeV)2.

4.3.3. Helicity amplitudes

In figure 4 we present our numerical results for the helicity amplitudes G+
BBX

(q2) and
G0

BBX
(q2) that have been discussed in section 2.2.2. As before, we study the helicity ampli-
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tudes in the large λ limit, where the expressions simplify to

(G+
BBX

(q2))2 =

[
q√
2mB

(
1 +

2

3
n2
BX

M2
∗

q2

)1/2

(FD
BB(q

2) + F P
BB(q

2))

]2
,

(G0
BBX

(q2))2 =

(
1 +

q2

4m2
Bx

2

)
(FD

BB(q
2))2 . (4.42)

The same limitations as for the generalized form factors apply here as well, i.e., the numerical
errors become significant for j ≥ 4 and q2 ≥ 5(GeV)2. Therefore the increase observed in
G+

BBX
(q2) for j = 3, 4 and q2 greater than 4(GeV)2 may be an artefact of the numerics.
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Figure 4: Helicity amplitudes G+,0
B0B2j

(q2) plotted versus q2 in (GeV)2. The transitions from

protons to the baryonic final states are labelled by j, where j = 1 (blue, solid), j = 2 (red,
dashed), j = 3 (orange, dotted) and j = 4 (green, dotdashed).

5. The proton structure functions

5.1. Baryon Regge trajectories in the Sakai-Sugimoto model

Assuming approximate continuity of the mass distribution, we can now approximate the
delta distributions in the following way:

∑

BX

δ[m2
BX

− s] ≡
∑

n

δ[m2
n −m2

n̄] =

∫
dn

[∣∣∣∣
∂m2

n

∂n

∣∣∣∣
]−1

δ(n− n̄)

=

[∣∣∣∣
∂m2

n

∂n

∣∣∣∣
]−1

n=n̄

≡ f(n̄), (5.1)

with the definition

s := −(p+ q)2 = m2
B0

+ q2(
1

x
− 1). (5.2)
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Therefore we have to evaluate the Regge trajectory of the baryon spectrum in order to

calculate ∂m2
n

∂n
. We find (cf. eq. (3.25))

∂m2
n

∂n
=

(
4√
6
M̃0M∗ +

4

3
nM2

∗

)
, (5.3)

where M̃0 can be chosen to match, e.g. the proton mass mB0 and n := nz.

5.2. Numerical results

5.2.1. Dependence of F1,2 on q2 and x

It is now possible to extract information about the structure functions F1,2(q
2, x) employing

the following strategy: From the discrete set of baryon mass states and the relation (5.2),
we find

∆m2
B2j

:= m2
B2j

−m2
B0

= q2
(
1

x
− 1

)
. (5.4)

It is possible for each j > 0 to extract a discrete set of values for q2 for a given set of fixed
Bjørken parameters, e.g., x = 0.001, 0.01, 0.05, 0.1, 0.3. Alternatively, we may calculate a
set of values for x for a given set of, e.g., q2 = 0.1, 0.5, 1, 2, 3 (GeV)2. The corresponding
values are summarized in table 3. Lastly, we need to collect some results about the calculation
of the isoscalar and isovector magnetic moments for the states under consideration. For the
proton and its excited states with nρ = 0 and spin up, we find (cf. eqs. (3.16) and (3.32) of
[22])

µi
I=0 =

1

4M0
δ3i ≈ 0.842 δ3i µB, µi

I=1 =
M0

3

√
5 + 2

√
5 +N2

c

2Nc
ρ2cl δ

3i ≈ 3.52 δ3i µB, (5.5)

measured in units of the Bohr magneton µB = 1/(2mB0). Here, the mass and size of the

classical instanton are M0 = 8π2κM∗ = 558 MeV and ρ2cl =
Nc

8π2κM2
∗

√
6√
5
, respectively, and we

have set Nc = 3 for obvious phenomenological reasons. Sometimes it will be more convenient
to utilize magnetic gI factors, which can be defined as follows,

µi
I =

gI
4mBX

σi, (5.6)

where σi are Pauli matrices. The numerical values in the Sakai-Sugimoto model turn out to
be

gI=0 ≈ 1.684 , gI=1 ≈ 7.031 . (5.7)

It is now a fairly straightforward exercise to evaluate the structure functions F1,2(q
2, x) for

the discrete set of values given in table 3. Again, it should be stressed that we work in the
large λ limit, i.e., we only keep the leading terms in the large λ, large Nc expansion before
setting the baryon masses (which are of order O(λNc)) to there phenomenological values.
The results are presented in figures 5 and 6.
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j f(n̄ = 2j)/M2
∗ ∆m2

B2j
/(GeV)2 q2/(GeV)2 x

1 0.233 5.317

0.00532 for x = 0.001
0.0537 for x = 0.01
0.280 for x = 0.05
0.591 for x = 0.1
2.279 for x = 0.3

0.0185 for q2 = 0.1(GeV)2

0.0860 for q2 = 0.5(GeV)2

0.158for q2 = 1(GeV)2

0.273 for q2 = 2(GeV)2

0.361 for q2 = 3(GeV)2

2 0.144 15.430

0.0154 for x = 0.001
0.156 for x = 0.01
0.812 for x = 0.05
1.714 for x = 0.1
6.613 for x = 0.3

0.00644 for q2 = 0.1(GeV)2

0.0314 for q2 = 0.5(GeV)2

0.0609for q2 = 1(GeV)2

0.115 for q2 = 2(GeV)2

0.163 for q2 = 3(GeV)2

3 0.0814 30.353

0.0304 for x = 0.001
0.307 for x = 0.01
1.598 for x = 0.05
3.373 for x = 0.1
13.008 for x = 0.3

0.00328 for q2 = 0.1(GeV)2

0.0162 for q2 = 0.5(GeV)2

0.0319for q2 = 1(GeV)2

0.0618 for q2 = 2(GeV)2

0.0899 for q2 = 3(GeV)2

4 0.0436 54.947

0.0550 for x = 0.001
0.555 for x = 0.01
2.892 for x = 0.05
6.105 for x = 0.1
23.549 for x = 0.3

0.00182 for q2 = 0.1(GeV)2

0.00902 for q2 = 0.5(GeV)2

0.0179for q2 = 1(GeV)2

0.0351 for q2 = 2(GeV)2

0.0518 for q2 = 3(GeV)2

Table 3: Some values for q2 and x according to eq. (5.4).

5.2.2. Callan-Gross relation

The Callan-Gross relation can be easily studied numerically in this framework in order to
check its validity for spin 1/2 particles, i.e., F2/(2xF1) = 1. This relation was verified
experimentally only for a certain range of values of q2 and x. The analytic expression for
the corresponding ratio of structure functions can be simplified and reads

RCG(q
2, x) :=

F2(q
2, x)

2xF1(q2, x)
,

=
mB +mBX

(q2, x)

2x2mB + x(mBX
(q2, x)−mB)

mB
√

m2
B
+ q2

4x2

+
q2κ2

B

4

(
gI=0+gI=1

2
− mB

√

m2
B
+ q2

4x2

)2

(
mB

√

m2
B
+ q2

4x2

+ 1
2

(
gI=0+gI=1

2
− mB

√

m2
B
+ q2

4x2

))2 .(5.8)

Note that the dependence on the Dirac and Pauli form factors drops out of the equation
completely. Here, mB is taken to be the mass of the proton as above, and again, we will
utilize the relation (5.4) to plot RCG(x) for several fixed values of q2. The result is presented
in figure 7. We find that the ratio RCG(x) diverges for small x, but asymptotes to one for
intermediate values of x that are still in the range of validity of our model.
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Figure 5: Structure functions F1,2(q
2) for x = 0.3 (orange, solid), x = 0.1 (red, dashed),

x = 0.05 (green, dotted) and x = 0.001 (blue, dotdashed, barely visible).

6. Conclusions and Outlook

In the present paper we have derived a generalization of the notions of baryon electromag-
netic form factors to non-elastic scattering when baryonic resonances with positive parity
are produced. Subsequently, we have used the Sakai-Sugimoto model to estimate these form
factors in the non-perturbative regime of large Nc QCD. We have also estimated the con-
tribution of these form factors to the proton structure functions. The results for the proton
structure functions obtained herein are understood to be non-inclusive and only represent a
small fraction of possible final states, namely single final state baryons (the excited states of
the proton) with spin 1/2 and positive parity. Therefore the magnitude of F1,2(q

2, x) is at
least two orders of magnitude smaller than what is expected from experimental results for
the full inclusive process of DIS (cf., e.g., [47], chapter 16). Contribution from final states
with spin 1/2 and negative parity [48] as well as final states with higher spin3 and pion
production may be relevant to get a better picture of the proton structure functions.

It is important to remark that, in this paper, we have considered the large λ limit in the
Sakai-Sugimoto model where the description of baryons as solitons is derived from classical
small instanton solutions, whose size is of order ρ2 ∼ λ−1/2. There may exist 1/λ corrections
that can be dominant at large distances as suggested in a recent analysis [49,50]. One should
also bear in mind the limitations of describing baryons in the large Nc limit 4. Interestingly,
in [52] holographic baryons were constructed for the (bottom-up) hard wall model as solitons
in an AdS5 spacetime with cut-off. These baryons have finite size and have the expected long-
distance properties [49]. It would be interesting to investigate baryon resonance production
in this model and recent holographic models such as [53,54] or the recent string models
based on the singular [55,18] and deformed [56,57] conifold backgrounds. It would be also

3See [24] for transition to ∆ resonances in the Sakai-Sugimoto model
4There occurs a phase transition at Nc ≈ 8 that separates the small Nc (= 3) regime where nuclear

matter behaves like a quantum liquid from the large Nc (holographic) regime where nuclear matter behaves
like a crystalline solid [51]

29



0.05 0.10 0.15 0.20 0.25 0.30 0.35
x

0.001

0.002

0.003

0.004

0.005

F1Iq2, xM

0.05 0.10 0.15 0.20 0.25 0.30 0.35
x

0.0002

0.0004

0.0006

0.0008

F2Iq2, xM

Figure 6: Structure functions F1,2(x) for q
2 = 3(GeV)2 (purple, solid), q2 = 2(GeV)2 (blue,

dotdashed), q2 = 1(GeV)2 (green, dotted), q2 = 0.5(GeV)2 (red, dashed) and q2 = 0.1(GeV)2

(orange, solid, barely visible) .

interesting to estimate the contribution of resonance production in other scattering processes
like dilepton production in proton-proton scattering (see [59]).
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A. Breit frame for inelastic scattering

Consider the scattering between a virtual photon and a hadron in the hadron rest frame.
After two rotations we can set the spatial momentum of the photon to the x3 direction, so
that

pµ = (mB, 0, 0, 0)
qµ = (q0, 0, 0, q3) , (A.1)

and we choose q3 > 0. The virtuality and Bjorken variable in this frame are given by

Q2 = q23 − q20 , x = − Q2

2mBq0
. (A.2)

Now we perform a boost in the x3 direction so that

p′µ = (γmB, 0, 0,−βγmB)
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Figure 7: Callan-Gross ratio RCG(x) for q
2 = 4(GeV)2 (brown, solid), q2 = 3(GeV)2 (purple,

solid), q2 = 2(GeV)2 (blue, dotdashed), q2 = 1(GeV)2 (green, dotted) and q2 = 0.5(GeV)2

(red, dashed).

q′µ = (γq0 − βγq3, 0, 0,−βγq0 + γq3) . (A.3)

The Breit frame is defined by the condition q′0 = 0 so that

β =
q0
q3

=
q0√

q20 +Q2
, γ =

√
q20 +Q2

Q
, q′3 = Q , (A.4)

and we arrive at

p′µ = (
√
m2

B + p23, 0, 0, p3)

q′µ = (0, 0, 0, Q) , (A.5)

with

p3 = − Q

2x
. (A.6)
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