4,172 research outputs found

    Possible trace of neutrino nonstandard interactions in the supernova

    Full text link
    Neutrino non-standard interactions (NSI), previously introduced for the sun, are studied in the supernova context. For normal hierarchy the probability for electron neutrinos and antineutrinos at low energy (E0.80.9MeVE\lesssim 0.8-0.9 MeV) is substantially increased with respect to the non-NSI case and joins its value for inverse hierarchy which is constant with energy. Also for inverse hierarchy the NSI and non-NSI probabilities are the same for each neutrino and antineutrino species. These are the possible visible effects of NSI in the supernova. The decay into antineutrinos, which has been previously shown to be implied by dense matter, cannot be seen experimentally, owing to the smallness of the antineutrino production probability.Comment: 5 pages, 3 eps figures. Acknowledgements include

    A Bayesian spatio-temporal model of panel design data: airborne particle number concentration in Brisbane, Australia

    Get PDF
    This paper outlines a methodology for semi-parametric spatio-temporal modelling of data which is dense in time but sparse in space, obtained from a split panel design, the most feasible approach to covering space and time with limited equipment. The data are hourly averaged particle number concentration (PNC) and were collected, as part of the Ultrafine Particles from Transport Emissions and Child Health (UPTECH) project. Two weeks of continuous measurements were taken at each of a number of government primary schools in the Brisbane Metropolitan Area. The monitoring equipment was taken to each school sequentially. The school data are augmented by data from long term monitoring stations at three locations in Brisbane, Australia. Fitting the model helps describe the spatial and temporal variability at a subset of the UPTECH schools and the long-term monitoring sites. The temporal variation is modelled hierarchically with penalised random walk terms, one common to all sites and a term accounting for the remaining temporal trend at each site. Parameter estimates and their uncertainty are computed in a computationally efficient approximate Bayesian inference environment, R-INLA. The temporal part of the model explains daily and weekly cycles in PNC at the schools, which can be used to estimate the exposure of school children to ultrafine particles (UFPs) emitted by vehicles. At each school and long-term monitoring site, peaks in PNC can be attributed to the morning and afternoon rush hour traffic and new particle formation events. The spatial component of the model describes the school to school variation in mean PNC at each school and within each school ground. It is shown how the spatial model can be expanded to identify spatial patterns at the city scale with the inclusion of more spatial locations.Comment: Draft of this paper presented at ISBA 2012 as poster, part of UPTECH projec

    Helicopter simulation validation using flight data

    Get PDF
    A joint NASA/Army effort to perform a systematic ground-based piloted simulation validation assessment is described. The best available mathematical model for the subject helicopter (UH-60A Black Hawk) was programmed for real-time operation. Flight data were obtained to validate the math model, and to develop models for the pilot control strategy while performing mission-type tasks. The validated math model is to be combined with motion and visual systems to perform ground based simulation. Comparisons of the control strategy obtained in flight with that obtained on the simulator are to be used as the basis for assessing the fidelity of the results obtained in the simulator

    Nonlinear 3-D simulation of high-intensity focused ultrasound therapy in the Kidney

    Get PDF
    Kidney cancer is a severe disease which can be treated non-invasively using high-intensity focused ultrasound (HIFU) therapy. However, tissue in front of the transducer and the deep location of kidney can cause significant losses to the efficiency of the treatment. The effect of attenuation, refraction and reflection due to different tissue types on HIFU therapy of the kidney was studied using a nonlinear ultrasound simulation model. The geometry of the tissue was derived from a computed tomography (CT) dataset of a patient which had been segmented for water, bone, soft tissue, fat and kidney. The combined effect of inhomogeneous attenuation and soundspeed was found to result in an 11.0 dB drop in spatial peak-temporal average (SPTA) intensity in the kidney compared to pure water. The simulation without refraction effects showed a 6.3 dB decrease indicating that both attenuation and refraction contribute to the loss in focal intensity. The losses due to reflections at soft tissue interfaces were less than 0.1 dB. Focal point shifting due to refraction effects resulted in -1.3, 2.6 and 1.3 mm displacements in x-, y- and z-directions respectively. Furthermore, focal point splitting into several smaller subvolumes was observed. The total volume of the secondary focal points was approximately 46% of the largest primary focal point. This could potentially lead to undesired heating outside the target location and longer therapy times

    Remaining inconsistencies with solar neutrinos: can spin flavour precession provide a clue?

    Full text link
    A few inconsistencies remain after it has been ascertained that LMA is the dominant solution to the solar neutrino problem: why is the SuperKamiokande spectrum flat and why is the Chlorine rate prediction over two standard deviations above the data. There also remains the ananswered and important question of whether the active neutrino flux is constant or time varying. We propose a scenario involving spin flavour precession to sterile neutrinos with three active flavours that predicts a flat SuperK spectrum and a Chlorine rate prediction more consistent with data. We also argue that running the Borexino experiment during the next few years may provide a very important clue as to the possible variability of the solar neutrino flux.Comment: 3 pages, 2 figures, contribution to TAUP 2009 (Rome

    Unknowns after the SNO Charged-Current Measurement

    Get PDF
    We perform a model-independent analysis of solar neutrino flux rates including the recent charged-current measurement at the Sudbury Neutrino Observatory (SNO). We derive a universal sum rule involving SNO and SuperKamiokande rates, and show that the SNO neutral-current measurement can not fix the fraction of solar νe\nu_e oscillating to sterile neutrinos. The large uncertainty in the SSM 8^8B flux impedes a determination of the sterile neutrino fraction.Comment: Version to appear in PRL; includes analysis with anticipated SNO NC measuremen

    Entropic effects on the Size Evolution of Cluster Structure

    Full text link
    We show that the vibrational entropy can play a crucial role in determining the equilibrium structure of clusters by constructing structural phase diagrams showing how the structure depends upon both size and temperature. These phase diagrams are obtained for example rare gas and metal clusters.Comment: 5 pages, 3 figure

    Measurement of the Solar Neutrino Capture Rate by the Russian-American Gallium Solar Neutrino Experiment During One Half of the 22-Year Cycle of Solar Activity

    Full text link
    We present the results of measurements of the solar neutrino capture rate in gallium metal by the Russian-American Gallium Experiment SAGE during slightly more than half of a 22-year cycle of solar activity. Combined analysis of the data of 92 runs during the 12-year period January 1990 through December 2001 gives a capture rate of solar neutrinos with energy more than 233 keV of 70.8 +5.3/-5.2 (stat.) +3.7/-3.2 (syst.) SNU. This represents only slightly more than half of the predicted standard solar model rate of 128 SNU. We give the results of new runs beginning in April 1998 and the results of combined analysis of all runs since 1990 during yearly, monthly, and bimonthly periods. Using a simple analysis of the SAGE results combined with those from all other solar neutrino experiments, we estimate the electron neutrino pp flux that reaches the Earth to be (4.6 +/- 1.1) E10/(cm^2-s). Assuming that neutrinos oscillate to active flavors the pp neutrino flux emitted in the solar fusion reaction is approximately (7.7 +/- 1.8) E10/(cm^2-s), in agreement with the standard solar model calculation of (5.95 +/- 0.06) E10/(cm^2-s).Comment: English translation of article submitted to Russian journal Zh. Eksp. Teor. Fiz. (JETP); 12 pages, 5 figures. V2: Added winter-summer difference and 2 reference

    High sensitivity measurement of 224Ra and 226Ra in water with an improved hydrous titanium oxide technique at the Sudbury Neutrino Observatory

    Full text link
    The existing hydrous titanium oxide (HTiO) technique for the measurement of 224Ra and 226Ra in the water at the Sudbury Neutrino Observatory (SNO) has been changed to make it faster and less sensitive to trace impurities in the HTiO eluate. Using HTiO-loaded filters followed by cation exchange adsorption and HTiO co-precipitation, Ra isotopes from 200-450 tonnes of heavy water can be extracted and concentrated into a single sample of a few millilitres with a total chemical efficiency of 50%. Combined with beta-alpha coincidence counting, this method is capable of measuring 2.0x10^3 uBq/kg of 224Ra and 3.7x10^3 uBq/kg of 226Ra from the 232Th and 238U decay chains, respectively, for a 275 tonne D2O assay, which are equivalent to 5x10^16 g Th/g and 3x10^16 g U/g in heavy water.Comment: 8 Pages, 2 figures and 2 table
    corecore