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Abstract

Kidney cancer is a severe disease which can be treated non-invasively using

high-intensity focused ultrasound (HIFU) therapy. However, tissue in front

of the transducer and the deep location of kidney can cause significant losses

to the efficiency of the treatment. The effect of attenuation, refraction and

reflection due to different tissue types on HIFU therapy of the kidney was

studied using a nonlinear ultrasound simulation model. The geometry of the

tissue was derived from a computed tomography (CT) dataset of a patient

which had been segmented for water, bone, soft tissue, fat and kidney. The

combined effect of inhomogeneous attenuation and sound-speed was found to

result in an 11.0 dB drop in spatial peak-temporal average (SPTA) intensity

in the kidney compared to pure water. The simulation without refraction

effects showed a 6.3 dB decrease indicating that both attenuation and re-
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fraction contribute to the loss in focal intensity. The losses due to reflections

at soft tissue interfaces were less than 0.1 dB. Focal point shifting due to

refraction effects resulted in −1.3, 2.6 and 1.3 mm displacements in x-, y-

and z-directions respectively. Furthermore, focal point splitting into several

smaller subvolumes was observed. The total volume of the secondary focal

points was approximately 46% of the largest primary focal point. This could

potentially lead to undesired heating outside the target location and longer

therapy times.

c© 2016. This manuscript version is made available under the CC-BY 4.0

license https://creativecommons.org/licenses/by/4.0/
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Introduction

Kidney cancer is the 13th most common cancer in the world with ap-

proximately 338,000 cases diagnosed in 2012 of which 214,000 were in men

and 124,000 in women (Ferlay et al., 2016). In the same year approximately

143,000 people died due to the disease. Early diagnosis as well as safe and

effective therapy methods are therefore crucial for the survival of patients.

Typically kidney cancer is treated surgically which is effective (Van Pop-

pel et al., 2011), but this can lead to complications in as many as 19% of

cases (Gill et al., 2003). Alternative, minimally invasive, therapies such as

cryotherapy (Gill et al., 2005) and radiofrequency ablation (Gervais et al.,

2005) reduce the risk of complications and often result in shorter hospital

stays. However, neither of these methods is completely non-invasive and

therefore still contain a risk of infection, seeding metastases and other com-

plications.

High-intensity focused ultrasound (HIFU) is a non-invasive therapy method

which does not require puncturing the skin and typically has minimal or no

side-effects. HIFU therapy can be used clinically to treat cancerous tissue

in kidney, but the oncological outcomes have been variable (Ritchie et al.,

2010). This has been thought to be partly due to the attenuation properties

of peri-nephric fat (Ritchie et al., 2013) which results in poor delivery of

HIFU energy to the target focal point. The effect of attenuation might be

significant especially in the nonlinear case where higher harmonic frequencies

generated during HIFU therapy are strongly attenuated. In addition to at-

tenuation, the defocusing of ultrasound due to refraction and the reflections

at the tissue interfaces might result in significant loss of HIFU energy (Illing
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et al., 2005).

The aim of this research is to investigate how the attenuation, reflection

and refraction effects of different tissue types affect the overall efficacy of

HIFU therapy of the kidney. This was done by performing nonlinear HIFU

therapy simulations in a segmented computed tomography (CT) dataset of

a patient in 3-D.

Simulations

Parallelised nonlinear ultrasound simulation model

The HIFU simulations were calculated using the parallel k-Wave tool-

box. The k-Wave toolbox models ultrasound wave propagation in soft tissue

using a generalised version of the Westervelt equation which accounts for

nonlinearity, material heterogeneities and power law absorption. The gov-

erning equations are solved using a k-space pseudospectral approach where

the Fourier collocation spectral method is used to calculate spatial gradients,

and a k-space corrected finite difference scheme is used to integrate forwards

in time.

The toolbox is designed for deployment on large distributed computer

clusters with thousands of compute cores (Nikl and Jaros, 2014). The sim-

ulation domain is partitioned over one or two dimensions and distributed

among the cores. Since the gradient calculation requires the fast Fourier

transform (FFT) to be calculated over the whole domain, global data ex-

change is performed in each simulation time step. Although this has been

proven to be a bottleneck, the code efficiency remains acceptable up to to

8192 compute cores (Nikl and Jaros, 2014). The simulation data sampling
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and storing is performed via a parallel I/O module based on the HDF5 library

and Luster file system.

Simulation geometry and execution

The simulation geometry was derived from a CT dataset of a patient

(see Figure 1). Thresholds were used to segment the data set into bone,

fat and other soft tissue. The kidney was then segmented manually. The

medium outside the patient was assumed to be water. Typical values for

sound speed, attenuation, density and B/A were used for each tissue type

(see Table 1) (Mast, 2000). The HIFU transducer was modelled on a clinical

system (Model JC-200 Tumor System, HAIFU) (Ritchie et al., 2013) with an

annular transmitting surface of outer diameter 20 cm and inner hole diameter

6 cm. The operating frequency was 0.95 MHz and the focal length was 14.5

cm. The transducer was positioned so that the geometric focal point of the

transducer (the white cross in Figure 1) was located in the bottom part of

left kidney.

For data analysis three simulations were conducted: (i) reference simu-

Table 1: Tissue parameters used in the simulations (Mast, 2000)

Density Sound speed Attenuation B/A

(kg/m3) (m/s) (dB/(MHz1.1·cm))

Water 1000 1520 0.00217 5.2

Bone 1908 4080 20.00 7.4

Soft tissue 1055 1575 0.60 7.0

Fat 950 1478 0.48 10.0

Kidney 1050 1560 1.00 7.4
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Figure 1: (a) Axial, (b) sagittal and (c) coronal slices of the CT scan showing the ultra-

sound pressure field in kidney. The pressure field is displayed on a log-scale with a dynamic

range of 30 dB. The different gray levels in the CT data correspond to the density of each

tissue type: white - bone, gray - kidney/soft tissue, black - water/fat. The ultrasound

focal point target location is marked with a white cross.

lation in pure water, (ii) simulation without the refraction effects (i.e., con-

stant sound speed of water in all tissue types) but all other properties varying

and (iii) simulation with all properties varying (i.e., with refraction effects).

Before performing the actual simulations several convergence studies were

conducted in order to find out the optimal grid size and temporal resolution.

The computational grid consisted of 1200 × 1200 × 1200 grid points (i.e.,

22.2 cm × 22.2 cm × 22.2 cm) giving a spatial resolution of 185 µm which

supported nonlinear harmonic frequencies up to 4 MHz. Perfectly matched

layers (PML) were used on the edges of the grid. The simulation length was

set to 260 µs with a temporal resolution of 8.15 ns giving a total of 31876 time

steps per simulation. The simulations were run using 400 computing cores for

approximately 180 hours in total using the computing facilities provided by

advanced research computing (ARC) at the University of Oxford (Richards,

2016). For data analysis the time-domain waveforms and the peak pressures
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were saved in a three-dimensional grid around the focal point. In addition

axial, sagittal and coronal slices of the ultrasound field over the whole spatial

domain were saved.

Results

Figure 1 shows the axial, sagittal and coronal slices of the ultrasound pres-

sure field generated by the HIFU transducer. The pressure field is displayed

in log-scale with a dynamic range of 30 dB. The transducer was positioned

in order to avoid the ribs which would otherwise cause significant pressure

losses due to strong reflection. The annular nature of the source results in

the appearance of two beams. In the focal region it can be seen that the

region of high pressure does not form the archetypical ellipse shape, but is

more diffuse. Further, the highest pressure is offset from the target location

(white cross marker) in all slices.

Figure 2 shows close-ups of the axial, sagittal and coronal slices of the

pressure field in the ultrasound focal area. Here the shift of the location of

the highest pressure from the target location is clear and it was determined to

be −1.3, 2.6 and 1.3 mm in x-, y- and z-directions respectively. By examining

the focal area in more detail in the coronal slice (see Figure 2(c)), it can be

seen that in addition to the focal shifting, a region of high pressure has split

into a number of subvolumes. This is more clearly visualised in Figure 3(a)

which shows the isosurfaces of the focal pressure regions thresholded at −6

dB. It can be seen that the focal region consists of five smaller focal points

with the largest being approximately 12 mm in length and 3 mm in width.

In comparison the size of the −6 dB focal point in water is approximately
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6.5 mm in length and 1.1 mm in width.
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Figure 2: (a) Axial, (b) sagittal and (c) coronal slices of the ultrasound field in the focal

area in kidney. The ultrasound focal point target location is marked with a cross.

The splitting of the focal region was quantified by identifying the largest

subvolume as the parent focal region and the others as child regions. For a

given pressure threshold, between 50% and 100% of the maximum pressure,

the volume of the child focal regions was compared to that of the parent focal

region. Figure 3(b) shows a histogram of the analysis. For pressure thresholds

above 80% no voxels were present in the child focal regions. However, when

the threshold was reduced to 70% it was found that approximately 5% of

the voxels were in the child focal regions. As the threshold was decreased

the amount of volume in the child regions increased. At the −6 dB pressure

threshold the total volume in the child regions was 46% of the volume of the

parent focal region. These data suggest that undesired heating effects will

occur at secondary focal points due to focal point splitting.

Figure 4(a) shows the time waveforms at the location of maximum peak

pressure in both water and kidney. The peak-positive pressure drops from

14.49 MPa in water to 3.51 MPa in kidney. Similarly, the spatial peak-

temporal average (SPTA) intensity has dropped from 4116 W/cm2 in water
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Figure 3: (a) The focal point volume is shown with isosurfaces thresholded at -6 dB. The

target focal point is marked with a black cross. The shifting and splitting of the focal

point into one parent and four child focal volumes can be seen. (b) Histogram showing the

size of the child volumes relative to the parent focal volume for various pressure contours

varying from 50% to 80% of the global peak pressure.
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Figure 4: (a) Time domain waveforms at the maximum peak pressure location in water

and kidney. (b) Windowed (Hann) frequency spectrum of the same waveforms.
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to 324 W/cm2 in kidney, that is, an 11.0 dB decrease. The simulation without

the refraction effects resulted in a single focal point (i.e., no focal splitting)

with a peak-positive pressure of 6.46 MPa and SPTA intensity of 957 W/cm2

corresponding to a 6.3 dB decrease. This suggests that refraction and atten-

uation contribute similarly to the loss in focal intensity. Figure 4(b) shows

the windowed (Hann) frequency spectrum of the same signals. A peak at

centre frequency 0.95 MHz is clearly visible as are the nonlinearly generated

harmonics, however, in the case of tissue the nonlinear effects are much less

pronounced.

Discussion

Ritchie et al. (2013) studied the attenuation of focused ultrasound using

subcutaneous and peri-nephric fat layers in front of the HIFU transducer.

They found the attenuation of peri-nephric fat to be significantly higher

(1.36 dB/cm) compared to typical fat tissue attenuation (0.48 dB/cm) (Mast,

2000). In the simulations reported here all the fat layers were segmented as

normal fat tissue using the latter attenuation value. This difference is not

thought to affect conclusions as for the patient derived data set employed here

the thickness of peri-nephric fat was 0.5 cm on average and adding in the

higher attenuation would contribute an extra 0.44 dB of loss which is small

in comparison to the total loss observed. The most significant attenuation

losses were caused by subcutaneous fat and soft tissue in front of the kidney

whose thickness were approximately 2.6 and 3.7 cm respectively.

In addition to attenuation, energy losses also occur due to reflections and

scattering at interfaces, such as, the rib cage, tissue interfaces and air pockets.
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Here the transducer was positioned so that reflections due to rib bones were

not present. The effect of tissue interfaces in the penetration of HIFU has

been studied in rabbit kidney in vivo by Damianou (2004). They found

the ultrasound penetration through muscle-kidney and fat-kidney interfaces

to be excellent in a situation where no air bubbles were present. However,

in some cases air spaces existed in between these interfaces which caused

strong reflections and acted as possible sites for cavitation during the HIFU

therapy. In the simulations here the interfaces between tissues contained no

air spaces, and therefore, all the possible energy losses due to reflections were

caused either by the rib cage or acoustic impedance mismatches between

tissue interfaces. The intensity transmission coefficients for water-fat, fat-

soft tissue, soft tissue-fat and fat-kidney interfaces were 99.84%, 99.29%,

99.29% and 99.41% respectively. For all the interfaces the total transmission

is 97.85% which corresponds to a loss of less than 0.1 dB.

Focal shifting and splitting due to variations in the sound speed is an-

other factor considerably affecting the efficacy of HIFU therapy. At interfaces

changes in sound speed result in refraction, in addition, the phase accumula-

tion will change in different tissues affecting the constructive and destructive

interference of the waves. These effects will impact both the intensity and the

location of the focus. Focal shifting due to subcutaneous and peri-nephric

fat was studied by Ritchie et al. (2013) who found the shift to be approxi-

mately 1 mm in both transverse directions. In the simulations here similar

magnitude shifts were observed which are large in terms of −6 dB focal point

width (1.1 mm), but not with respect to typical renal tumour sizes of several

centimetres (Remzi et al., 2007). Splitting of the ultrasound focal point into
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smaller, less defined, volumes can significantly reduce its heating efficiency.

The simulations showed an 11.0 dB drop in SPTA intensity when all effects

were incorporated (specifically attenuation and refraction) and only a 6.3

dB drop without the refraction effects (i.e., no focal point splitting). This

suggests that attenuation and refraction have a similar impact on the inten-

sity loss at the focus, contributing about 5 to 6 dB each. When focal point

splitting was present, the cumulative size of the two separate smaller focal

volumes was found to be approximately 46% of main focal point. Although

focal splitting provides larger total heating volume the efficiency is reduced,

because the acoustic energy is distributed over a larger volume which leads

to longer therapy times and also may result in undesired heating in regions

away from the target region.

Other phenomena that have been shown to reduce the efficacy of re-

nal HIFU therapy are respiratory movement (Marberger et al., 2005) and

perfusion (Chang et al., 2004). These effects were not incorporated in the

simulation model but could be considered in the future.

Conclusions

The effects of attenuation, reflection and refraction on the efficacy of

HIFU therapy in kidney were investigated using a nonlinear simulation model.

Attenuation and splitting due to refraction were found to be the most signifi-

cant factors reducing the intensity of the ultrasound field. Reflections due to

the rib cage could possibly cause significant losses, but this can be avoided by

optimal positioning of the transducer. The reflections due to tissue interfaces

were found to be negligible.
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