330 research outputs found

    Damping of spin waves and singularity of the longitudinal modes in the dipolar critical regime of the Heisenberg-ferromagnet EuS

    Full text link
    By inelastic scattering of polarized neutrons near the (200)-Bragg reflection, the susceptibilities and linewidths of the spin waves and the longitudinal spin fluctuations were determined separately. By aligning the momentum transfers q perpendicular to both \delta S_sw and the spontaneous magnetization M_s, we explored the statics and dynamics of these modes with transverse polarizations with respect to q. In the dipolar critical regime, where the inverse correlation length kappa_z(T) and q are smaller than the dipolar wavenumber q_d, we observe:(i) the static susceptibility of \delta S_sw^T(q) displays the Goldstone divergence while for \delta S_z^T(q) the Ornstein-Zernicke shape fits the data with a possible indication of a thermal(mass-)renormalization at the smallest q-values, i.e. we find indications for the predicted 1/q divergence of the longitudinal susceptibility; (ii) the spin wave dispersion as predicted by the Holstein-Primakoff theory revealing q_d=0.23(1)\AA^{-1}in good agreement with previous work in the paramagnetic and ferromagnetic regime of EuS; (iii) within experimental error, the (Lorentzian) linewidths of both modes turn out to be identical with respect to the q^2-variation, the temperature independence and the absolute magnitude. Due to the linear dispersion of the spin waves they remain underdamped for q<q_d. These central results differ significantly from the well known exchange dominated critical dynamics, but are quantitatively explained in terms of dynamical scaling and existing data for T>=T_C. The available mode-mode coupling theory, which takes the dipolar interactions fully into account, describes the gross features of the linewidths but not all details of the T- and q-dependencies. PACS: 68.35.Rh, 75.40.GbComment: 10 pages, 7 figure

    New Magnetic Excitations in the Spin-Density-Wave of Chromium

    Full text link
    Low-energy magnetic excitations of chromium have been reinvestigated with a single-Q crystal using neutron scattering technique. In the transverse spin-density-wave phase a new type of well-defined magnetic excitation is found around (0,0,1) with a weak dispersion perpendicular to the wavevector of the incommensurate structure. The magnetic excitation has an energy gap of E ~ 4 meV and at (0,0,1) exactly corresponds to the Fincher mode previously studied only along the incommensurate wavevector.Comment: 4 pages, 4 figure

    Characterization of low-energy magnetic excitations in chromium

    Full text link
    The low-energy excitations of Cr, i.e. the Fincher-Burke (FB) modes, have been investigated in the transversely polarized spin-density-wave phase by inelastic neutron scattering using a single-(Q+-) crystal with a propagation vector (Q+-) parallel to [0,0,1]. The constant-momentum-transfer scans show that the energy spectra consist of two components, namely dispersive FB modes and an almost energy-independent cross section. Most remarkably, we find that the spectrum of the FB modes exhibits one peak at 140 K near Q = (0,0,0.98) and two peaks near Q = (0,0,1.02), respectively. This is surprising because Cr crystallizes in a centro-symmetric bcc structure. The asymmetry of those energy spectra decreases with increasing temperature. In addition, the observed magnetic peak intensity is independent of Q suggesting a transfer of spectral-weight between the upper and lower FB modes. The energy-independent cross section is localized only between the incommensurate peaks and develops rapidly with increasing temperature.Comment: 6 pages, 8 figure

    Band structure of helimagnons in MnSi resolved by inelastic neutron scattering

    Full text link
    A magnetic helix realizes a one-dimensional magnetic crystal with a period given by the pitch length λh\lambda_h. Its spin-wave excitations -- the helimagnons -- experience Bragg scattering off this periodicity leading to gaps in the spectrum that inhibit their propagation along the pitch direction. Using high-resolution inelastic neutron scattering the resulting band structure of helimagnons was resolved by preparing a single crystal of MnSi in a single magnetic-helix domain. At least five helimagnon bands could be identified that cover the crossover from flat bands at low energies with helimagnons basically localized along the pitch direction to dispersing bands at higher energies. In the low-energy limit, we find the helimagnon spectrum to be determined by a universal, parameter-free theory. Taking into account corrections to this low-energy theory, quantitative agreement is obtained in the entire energy range studied with the help of a single fitting parameter.Comment: 5 pages, 3 figures; (v2) slight modifications, published versio
    corecore