8 research outputs found

    Microearthquakes illuminate the deep structure of the endglacial Pärvie fault, northern Sweden

    No full text
    © The Author 2015. Published by Oxford University Press on behalf of The Royal Astronomical Society. At 155 km, the Pärvie fault is the world's longest known endglacial fault (EGF). It is located in northernmost Sweden in a region where several kilometre-scale EGFs have been identified. Based on studies of Quaternary deposits, landslides and liquefaction structures, these faults are inferred to have ruptured as large earthquakes when the latest ice sheet disappeared from the region, some 9500 yr ago. The EGFs still exhibit relatively high seismic activity, and here we present new earthquake data from northern Sweden in general and the Pärvie fault in particular. More than 1450 earthquakes have been recorded in Sweden north of 66° latitude in the years 2000-2013. There is a remarkable correlation between this seismicity and the mapped EGF scarps. We find that 71 per cent of the observed earthquakes north of 66° locate within 30 km to the southeast and 10 km to the northwest of the EGFs, which is consistent with the EGFs' observed reverse faulting mechanisms, with dips to the southeast. In order to further investigate the seismicity along the Pärvie fault we installed a temporary seismic network in the area between 2007 and 2010. In addition to the routine automatic detection and location algorithm, we devised a waveform cross-correlation technique which resulted in a 50 per cent increase of the catalogue and a total of 1046 events along the Pärvie fault system between 2003 and 2013. The earthquakes were used to establish an improved velocity model for the area, using 3-D local earthquake tomography. The resulting 3-D velocity model shows smooth, minor velocity variations in the area. All events were relocated in this new 3-D model. A tight cluster on the central part of the Pärvie fault, where the rate of seismicity is the highest, could be relocated with high precision relative location. We performed depth phase analysis on 40 of the larger events to further constrain the hypocentral locations. We find that the seismicity on the Pärvie fault correlates very well with the mapped surface trace of the fault. The events do not align along a well-defined fault plane at depth but form a zone of seismicity that dips between 30° and 60° to the southeast of the surface fault trace, with distinct along-strike variations. The seismic zone extends to approximately 35 km depth. Using this geometry and earthquake scaling relations, we estimate that the endglacial Pärvie earthquake had a magnitude of 8.0 ± 0.4

    Processing automatic seismic event detections : an iterative sorting algorithm improving earthquake hypocentres using interevent cross-correlation

    No full text
    We present an iterative classification scheme using interevent cross-correlation to update an existing earthquake catalogue with similar events from a list of automatic seismic event detections. The algorithm automatically produces catalogue quality events, with improved hypocentres and reliable P- and S-arrival time information. Detected events are classified into four event categories with the purpose of using the top category, with the highest assessed event quality and highest true-to-false ratio, directly for local earthquake tomography without additional manual analysis. The remaining categories have varying proportions of lower quality events, quality being defined primarily by the number of observed phase onsets, and can be viewed as different priority groups for manual inspection to reduce the time spent by a seismic analyst. A list of 3348 event detections from the geothermally active volcanic region around Hengill, southwest Iceland, produced by our migration and stack detector (Wagner et al. 2017), was processed using a reference catalogue of 1108 manually picked events from the same area. P- and S-phase onset times were automatically determined for the detected events using correlation time lags with respect to manually picked phase arrivals from different multiple reference events at the same station. A significant improvement of the initial hypocentre estimates was achieved after relocating the detected events using the computed phase onset times. The differential time data set resulting from the correlation was successfully used for a double-difference relocation of the final updated catalogue. The routine can potentially be implemented in real-time seismic monitoring environments in combination with a variety of seismic event/phase detectors
    corecore