70 research outputs found
Effects of Nuclear Structure on Quasi-fission
The quasi-fission mechanism hinders fusion of heavy systems because of a mass
flow between the reactants, leading to a re-separation of more symmetric
fragments in the exit channel. A good understanding of the competition between
fusion and quasi-fission mechanisms is expected to be of great help to optimize
the formation and study of heavy and superheavy nuclei. Quantum microscopic
models, such as the time-dependent Hartree-Fock approach, allow for a treatment
of all degrees of freedom associated to the dynamics of each nucleon. This
provides a description of the complex reaction mechanisms, such as
quasi-fission, with no parameter adjusted on reaction mechanisms. In
particular, the role of the deformation and orientation of a heavy target, as
well as the entrance channel magicity and isospin are investigated with
theoretical and experimental approaches.Comment: Invited talk to NSRT12. To be published in Eur. Phys. J. Web of Con
The Random Discrete Action for 2-Dimensional Spacetime
A one-parameter family of random variables, called the Discrete Action, is
defined for a 2-dimensional Lorentzian spacetime of finite volume. The single
parameter is a discreteness scale. The expectation value of this Discrete
Action is calculated for various regions of 2D Minkowski spacetime. When a
causally convex region of 2D Minkowski spacetime is divided into subregions
using null lines the mean of the Discrete Action is equal to the alternating
sum of the numbers of vertices, edges and faces of the null tiling, up to
corrections that tend to zero as the discreteness scale is taken to zero. This
result is used to predict that the mean of the Discrete Action of the flat
Lorentzian cylinder is zero up to corrections, which is verified. The
``topological'' character of the Discrete Action breaks down for causally
convex regions of the flat trousers spacetime that contain the singularity and
for non-causally convex rectangles.Comment: 20 pages, 10 figures, Typos correcte
Are Causality Violations Undesirable?
Causality violations are typically seen as unrealistic and undesirable
features of a physical model. The following points out three reasons why
causality violations, which Bonnor and Steadman identified even in solutions to
the Einstein equation referring to ordinary laboratory situations, are not
necessarily undesirable. First, a space-time in which every causal curve can be
extended into a closed causal curve is singularity free--a necessary property
of a globally applicable physical theory. Second, a causality-violating
space-time exhibits a nontrivial topology--no closed timelike curve (CTC) can
be homotopic among CTCs to a point, or that point would not be causally well
behaved--and nontrivial topology has been explored as a model of particles.
Finally, if every causal curve in a given space-time passes through an event
horizon, a property which can be called "causal censorship", then that
space-time with event horizons excised would still be causally well behaved.Comment: Accepted in October 2008 by Foundations of Physics. Latex2e, 6 pages,
no figures. Presented at a seminar at the Universidad Nacional Autonoma de
Mexico. Version 2 was co-winner of the QMUL CTC Essay Priz
Obstruction Results in Quantization Theory
We define the quantization structures for Poisson algebras necessary to
generalise Groenewold and Van Hove's result that there is no consistent
quantization for the Poisson algebra of Euclidean phase space. Recently a
similar obstruction was obtained for the sphere, though surprising enough there
is no obstruction to the quantization of the torus. In this paper we want to
analyze the circumstances under which such obstructions appear. In this context
we review the known results for the Poisson algebras of Euclidean space, the
sphere and the torus.Comment: 34 pages, Latex. To appear in J. Nonlinear Scienc
Topological and geometrical restrictions, free-boundary problems and self-gravitating fluids
Let (P1) be certain elliptic free-boundary problem on a Riemannian manifold
(M,g). In this paper we study the restrictions on the topology and geometry of
the fibres (the level sets) of the solutions f to (P1). We give a technique
based on certain remarkable property of the fibres (the analytic representation
property) for going from the initial PDE to a global analytical
characterization of the fibres (the equilibrium partition condition). We study
this analytical characterization and obtain several topological and geometrical
properties that the fibres of the solutions must possess, depending on the
topology of M and the metric tensor g. We apply these results to the classical
problem in physics of classifying the equilibrium shapes of both Newtonian and
relativistic static self-gravitating fluids. We also suggest a relationship
with the isometries of a Riemannian manifold.Comment: 36 pages. In this new version the analytic representation hypothesis
is proved. Please address all correspondence to D. Peralta-Sala
Resonances of 6He via the 8He(p,t)6He reaction
CERN-Proceedings-2010-001 available at http://www.fluka.org/Varenna2009/procmat.htmInternational audienceWe investigated the low-lying spectroscopy of 6He via the 2-neutron transfer reaction induced by the 8He SPIRAL beam at 15.4 A.MeV on a proton-rich target. The light charged recoil particles produced by the direct reactions were measured using theMUST2 Si-strip telescope array. Two new resonances were observed above the known 2+ state in 6He, and the angular momentum transfer was deduced through the analysis of the angular distributions. Results are discussed in comparison with the recent calculations of various nuclear structure theories which include the coupling to the continuum technique and to the ones which give an understanding of the cluster correlations in the light weakly-bound nuclei
Resonances of 6He via the 8He(p,t)6He reaction
We investigated the low-lying spectroscopy of 6He via the 2-neutron transfer reaction induced by the 8He SPIRAL beam at 15.4 A.MeV on a proton-rich target. The light charged recoil particles produced by the direct reactions were measured using theMUST2 Si-strip telescope array. Two new resonances were observed above the known 2+ state in 6He, and the angular momentum transfer was deduced through the analysis of the angular distributions. Results are discussed in comparison with the recent calculations of various nuclear structure theories which include the coupling to the continuum technique and to the ones which give an understanding of the cluster correlations in the light weakly-bound nuclei
Study of Sn+Xe fusion-evaporation: analysis of a rare-event experiment
7 pages, 4 figuresFusion-evaporation in the Sn+Xe system is studied using a high intensity xenon beam provided by the Ganil accelerator and the LISE3 wien filter for the selection of the products. Due to the mass symmetry of the entrance system, the rejection of the beam by the spectrometer was of the order of . We have thus performed a detailed statistical analysis to estimate random events and to infer the fusion-evaporation cross sections. No signicant decay events were detected and upper limit cross sections of 172~pb, 87~pb and 235~pb were deduced for the synthesis of Rf, Rf and Rf, respectively
Static perfect fluids with Pant-Sah equations of state
We analyze the 3-parameter family of exact, regular, static, spherically
symmetric perfect fluid solutions of Einstein's equations (corresponding to a
2-parameter family of equations of state) due to Pant and Sah and
"rediscovered" by Rosquist and the present author. Except for the Buchdahl
solutions which are contained as a limiting case, the fluids have finite radius
and are physically realistic for suitable parameter ranges. The equations of
state can be characterized geometrically by the property that the 3-metric on
the static slices, rescaled conformally with the fourth power of any linear
function of the norm of the static Killing vector, has constant scalar
curvature. This local property does not require spherical symmetry; in fact it
simplifies the the proof of spherical symmetry of asymptotically flat solutions
which we recall here for the Pant-Sah equations of state. We also consider a
model in Newtonian theory with analogous geometric and physical properties,
together with a proof of spherical symmetry of the asymptotically flat
solutions.Comment: 32 p., Latex, minor changes and correction
The nuclear energy density functional formalism
The present document focuses on the theoretical foundations of the nuclear
energy density functional (EDF) method. As such, it does not aim at reviewing
the status of the field, at covering all possible ramifications of the approach
or at presenting recent achievements and applications. The objective is to
provide a modern account of the nuclear EDF formalism that is at variance with
traditional presentations that rely, at one point or another, on a {\it
Hamiltonian-based} picture. The latter is not general enough to encompass what
the nuclear EDF method represents as of today. Specifically, the traditional
Hamiltonian-based picture does not allow one to grasp the difficulties
associated with the fact that currently available parametrizations of the
energy kernel at play in the method do not derive from a genuine
Hamilton operator, would the latter be effective. The method is formulated from
the outset through the most general multi-reference, i.e. beyond mean-field,
implementation such that the single-reference, i.e. "mean-field", derives as a
particular case. As such, a key point of the presentation provided here is to
demonstrate that the multi-reference EDF method can indeed be formulated in a
{\it mathematically} meaningful fashion even if does {\it not} derive
from a genuine Hamilton operator. In particular, the restoration of symmetries
can be entirely formulated without making {\it any} reference to a projected
state, i.e. within a genuine EDF framework. However, and as is illustrated in
the present document, a mathematically meaningful formulation does not
guarantee that the formalism is sound from a {\it physical} standpoint. The
price at which the latter can be enforced as well in the future is eventually
alluded to.Comment: 64 pages, 8 figures, submitted to Euroschool Lecture Notes in Physics
Vol.IV, Christoph Scheidenberger and Marek Pfutzner editor
- …