43 research outputs found

    Simulation of dimensionality effects in thermal transport

    Full text link
    The discovery of nanostructures and the development of growth and fabrication techniques of one- and two-dimensional materials provide the possibility to probe experimentally heat transport in low-dimensional systems. Nevertheless measuring the thermal conductivity of these systems is extremely challenging and subject to large uncertainties, thus hindering the chance for a direct comparison between experiments and statistical physics models. Atomistic simulations of realistic nanostructures provide the ideal bridge between abstract models and experiments. After briefly introducing the state of the art of heat transport measurement in nanostructures, and numerical techniques to simulate realistic systems at atomistic level, we review the contribution of lattice dynamics and molecular dynamics simulation to understanding nanoscale thermal transport in systems with reduced dimensionality. We focus on the effect of dimensionality in determining the phononic properties of carbon and semiconducting nanostructures, specifically considering the cases of carbon nanotubes, graphene and of silicon nanowires and ultra-thin membranes, underlying analogies and differences with abstract lattice models.Comment: 30 pages, 21 figures. Review paper, to appear in the Springer Lecture Notes in Physics volume "Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer" (S. Lepri ed.

    Thermal Transport in Micro- and Nanoscale Systems

    Get PDF
    Small-scale (micro-/nanoscale) heat transfer has broad and exciting range of applications. Heat transfer at small scale quite naturally is influenced – sometimes dramatically – with high surface area-to-volume ratios. This in effect means that heat transfer in small-scale devices and systems is influenced by surface treatment and surface morphology. Importantly, interfacial dynamic effects are at least non-negligible, and there is a strong potential to engineer the performance of such devices using the progress in micro- and nanomanufacturing technologies. With this motivation, the emphasis here is on heat conduction and convection. The chapter starts with a broad introduction to Boltzmann transport equation which captures the physics of small-scale heat transport, while also outlining the differences between small-scale transport and classical macroscale heat transport. Among applications, examples are thermoelectric and thermal interface materials where micro- and nanofabrication have led to impressive figure of merits and thermal management performance. Basic of phonon transport and its manipulation through nanostructuring materials are discussed in detail. Small-scale single-phase convection and the crucial role it has played in developing the thermal management solutions for the next generation of electronics and energy-harvesting devices are discussed as the next topic. Features of microcooling platforms and physics of optimized thermal transport using microchannel manifold heat sinks are discussed in detail along with a discussion of how such systems also facilitate use of low-grade, waste heat from data centers and photovoltaic modules. Phase change process and their control using surface micro-/nanostructure are discussed next. Among the feature considered, the first are microscale heat pipes where capillary effects play an important role. Next the role of nanostructures in controlling nucleation and mobility of the discrete phase in two-phase processes, such as boiling, condensation, and icing is explained in great detail. Special emphasis is placed on the limitations of current surface and device manufacture technologies while also outlining the potential ways to overcome them. Lastly, the chapter is concluded with a summary and perspective on future trends and, more importantly, the opportunities for new research and applications in this exciting field

    Pixel Level Demonstration of Phase Change Material Based Spatial Light Modulation

    No full text
    We present an advancement towards high speed (sub μs) phase change material based spatial light modulators by electrically addressing single pixels with high-speed optical monitoring at 1550nm light
    corecore