1,736 research outputs found

    Chemiluminescent reaction processes pertinent to the chemosphere in the micron pressure region

    Get PDF
    Chemiluminescent reaction processes in vacuum system operating in micron pressure regio

    A Lévy-Ciesielski expansion for quantum Brownian motion and the construction of quantum Brownian bridges

    Get PDF
    We introduce "probabilistic" and "stochastic Hilbertian structures". These seem to be a suitable context for developing a theory of "quantum Gaussian processes". The Schauder system is utilised to give a Lévy-Ciesielski representation of quantum (bosonic) Brownian motion as operators in Fock space over a space of square summable sequences. Similar results hold for non-Fock, fermion, free and monotone Brownian motions. Quantum Brownian bridges are defined and a number of representations of these are given

    Stationary Random Fields on the Unitary Dual of a Compact Group

    Get PDF
    We generalise the notion of wide-sense stationarity from sequences of complex-valued random variables indexed by the integers, to fields of random variables that are labelled by elements of the unitary dual of a compact group. The covariance is positive definite, and so it is the Fourier transform of a finite central measure (the spectral measure of the field) on the group. Analogues of the Cramer and Kolmogorov theorems are extended to this framework. White noise makes sense in this context and so, for some classes of group, we can construct time series and investigate their stationarity. Finally we indicate how these ideas fit into the general theory of stationary random fields on hypergroups

    Anomalous Processes with General Waiting Times: Functionals and Multipoint Structure

    Get PDF
    Many transport processes in nature exhibit anomalous diffusive properties with non-trivial scaling of the mean square displacement, e.g., diffusion of cells or of biomolecules inside the cell nucleus, where typically a crossover between different scaling regimes appears over time. Here, we investigate a class of anomalous diffusion processes that is able to capture such complex dynamics by virtue of a general waiting time distribution. We obtain a complete characterization of such generalized anomalous processes, including their functionals and multi-point structure, using a representation in terms of a normal diffusive process plus a stochastic time change. In particular, we derive analytical closed form expressions for the two-point correlation functions, which can be readily compared with experimental data.Comment: Accepted in Phys. Rev. Let

    First exit times of solutions of stochastic differential equations driven by multiplicative Levy noise with heavy tails

    Full text link
    In this paper we study first exit times from a bounded domain of a gradient dynamical system Y˙t=U(Yt)\dot Y_t=-\nabla U(Y_t) perturbed by a small multiplicative L\'evy noise with heavy tails. A special attention is paid to the way the multiplicative noise is introduced. In particular we determine the asymptotics of the first exit time of solutions of It\^o, Stratonovich and Marcus canonical SDEs.Comment: 19 pages, 2 figure

    Coupled oscillators and Feynman's three papers

    Get PDF
    According to Richard Feynman, the adventure of our science of physics is a perpetual attempt to recognize that the different aspects of nature are really different aspects of the same thing. It is therefore interesting to combine some, if not all, of Feynman's papers into one. The first of his three papers is on the ``rest of the universe'' contained in his 1972 book on statistical mechanics. The second idea is Feynman's parton picture which he presented in 1969 at the Stony Brook conference on high-energy physics. The third idea is contained in the 1971 paper he published with his students, where they show that the hadronic spectra on Regge trajectories are manifestations of harmonic-oscillator degeneracies. In this report, we formulate these three ideas using the mathematics of two coupled oscillators. It is shown that the idea of entanglement is contained in his rest of the universe, and can be extended to a space-time entanglement. It is shown also that his parton model and the static quark model can be combined into one Lorentz-covariant entity. Furthermore, Einstein's special relativity, based on the Lorentz group, can also be formulated within the mathematical framework of two coupled oscillators.Comment: 31 pages, 6 figures, based on the concluding talk at the 3rd Feynman Festival (Collage Park, Maryland, U.S.A., August 2006), minor correction

    The weakly coupled fractional one-dimensional Schr\"{o}dinger operator with index 1<α2\bf 1<\alpha \leq 2

    Full text link
    We study fundamental properties of the fractional, one-dimensional Weyl operator P^α\hat{\mathcal{P}}^{\alpha} densely defined on the Hilbert space H=L2(R,dx)\mathcal{H}=L^2({\mathbb R},dx) and determine the asymptotic behaviour of both the free Green's function and its variation with respect to energy for bound states. In the sequel we specify the Birman-Schwinger representation for the Schr\"{o}dinger operator KαP^αgV^K_{\alpha}\hat{\mathcal{P}}^{\alpha}-g|\hat{V}| and extract the finite-rank portion which is essential for the asymptotic expansion of the ground state. Finally, we determine necessary and sufficient conditions for there to be a bound state for small coupling constant gg.Comment: 16 pages, 1 figur
    corecore