5,295 research outputs found
Hydrodynamics of internal solitons and a comparison of SIR-A and SIR-B data with ocean measurements
Large internal solitary waves have been observed by Shuttle SIR-A and SIR-B at locations in the Andaman Sea and the New York Bight. Satellite imagery and oceanographic measurements are used in conjunction with hydrodynamic interaction and electromagnetic scattering models to estimate the expected SAR image intensity modulations associated with the internal waves. There is reasonable agreement between the predicted and observed internal wave signatures
Quantum Hall Ferromagnets: Induced Topological term and electromagnetic interactions
The quantum Hall ground state in materials like GaAs is well known
to be ferromagnetic in nature. The exchange part of the Coulomb interaction
provides the necessary attractive force to align the electron spins
spontaneously. The gapless Goldstone modes are the angular deviations of the
magnetisation vector from its fixed ground state orientation. Furthermore, the
system is known to support electrically charged spin skyrmion configurations.
It has been claimed in the literature that these skyrmions are fermionic owing
to an induced topological Hopf term in the effective action governing the
Goldstone modes. However, objections have been raised against the method by
which this term has been obtained from the microscopics of the system. In this
article, we use the technique of the derivative expansion to derive, in an
unambiguous manner, the effective action of the angular degrees of freedom,
including the Hopf term. Furthermore, we have coupled perturbative
electromagnetic fields to the microscopic fermionic system in order to study
their effect on the spin excitations. We have obtained an elegant expression
for the electromagnetic coupling of the angular variables describing these spin
excitations.Comment: 23 pages, Plain TeX, no figure
Nuclear Spin Relaxation for Higher Spin
We study the relaxation of a spin I that is weakly coupled to a quantum
mechanical environment. Starting from the microscopic description, we derive a
system of coupled relaxation equations within the adiabatic approximation.
These are valid for arbitrary I and also for a general stationary
non--equilibrium state of the environment. In the case of equilibrium, the
stationary solution of the equations becomes the correct Boltzmannian
equilibrium distribution for given spin I. The relaxation towards the
stationary solution is characterized by a set of relaxation times, the longest
of which can be shorter, by a factor of up to 2I, than the relaxation time in
the corresponding Bloch equations calculated in the standard perturbative way.Comment: 4 pages, Latex, 2 figure
Heat conduction and Wiedemann-Franz Law in disordered Luttinger Liquids
We consider heat transport in a Luttinger liquid (LL) with weak disorder and
study the Lorenz number for this system. We start at a high- regime, and
calculate both the electrical and thermal conductivities using a memory
function approach. The resulting Lorenz number is independent of but
depends explicitly on the LL exponents. Lowering , however, allows for a
renormalization of the LL exponents from their bare values by disorder, causing
a violation of the Wiedemann-Franz law. Finally, we extend the discussion to
quantum wire systems and study the wire size dependence of the Lorenz number.Comment: 4 pages, 1 eps figure; Changes made to address Referees' comment
The muonic longitudinal shower profiles at production
In this paper the longitudinal profile of muon production along the shower
axis is studied. The characteristics of this distribution is investigated for
different primary masses, zenith angles, primary energies, and different high
energy hadronic models. It is found that the shape of this distribution
displays universal features similarly to what is known for the electromagnetic
profile. The relation between the muon production distribution and the
longitudinal electromagnetic evolution is also discussed
Constructive factorization of LPDO in two variables
We study conditions under which a partial differential operator of arbitrary
order in two variables or ordinary linear differential operator admits a
factorization with a first-order factor on the left. The factorization process
consists of solving, recursively, systems of linear equations, subject to
certain differential compatibility conditions. In the generic case of partial
differential operators one does not have to solve a differential equation. In
special degenerate cases, such as ordinary differential, the problem is finally
reduced to the solution of some Riccati equation(s). The conditions of
factorization are given explicitly for second- and, and an outline is given for
the higher-order case.Comment: 16 pages, to be published in Journal "Theor. Math. Phys." (2005
A new Proposal for a Quasielectron Trial Wavefunction for the FQHE on a Disk
In this letter, we propose a new quasielectron trial wavefunction for
interacting electrons in two dimensions moving in a strong magnetic field in a
disk geometry. Requiring that the trial wavefunction exhibits the correct
filling factor of a quasielectron wavefunction, we obtain angular
momentum eigenfunctions. The expectation values of the energy are calculated
and compared with the data of an exact numerical diagonalization.Comment: 8 page
Delocalization in Coupled Luttinger Liquids with Impurities
We study effects of quenched disorder on coupled two-dimensional arrays of
Luttinger liquids (LL) as a model for stripes in high-T_c compounds. In the
framework of a renormalization-group analysis, we find that weak inter-LL
charge-density-wave couplings are always irrelevant as opposed to the pure
system. By varying either disorder strength, intra- or inter-LL interactions,
the system can undergo a delocalization transition between an insulator and a
novel strongly anisotropic metallic state with LL-like transport. This state is
characterized by short-ranged charge-density-wave order, the superconducting
order is quasi long-ranged along the stripes and short-ranged in the
transversal direction.Comment: 6 pages, 5 figures, substantially extended and revised versio
Monte Carlo Simulation of the Heisenberg Antiferromagnet on a Triangular Lattice: Topological Excitations
We have simulated the classical Heisenberg antiferromagnet on a triangular
lattice using a local Monte Carlo algorithm. The behavior of the correlation
length , the susceptibility at the ordering wavevector , and
the spin stiffness clearly reflects the existence of two temperature
regimes -- a high temperature regime , in which the disordering
effect of vortices is dominant, and a low temperature regime ,
where correlations are controlled by small amplitude spin fluctuations. As has
previously been shown, in the last regime, the behavior of the above quantities
agrees well with the predictions of a renormalization group treatment of the
appropriate nonlinear sigma model. For , a satisfactory fit of the
data is achieved, if the temperature dependence of and is
assumed to be of the form predicted by the Kosterlitz--Thouless theory.
Surprisingly, the crossover between the two regimes appears to happen in a very
narrow temperature interval around .Comment: 13 pages, 8 Postscript figure
- …
