22,206 research outputs found
Spontaneous Flavor and Parity Breaking with Wilson Fermions
We discuss the phase diagram of Wilson fermions in the -- plane for
two-flavor QCD. We argue that, as originally suggested by Aoki, there is a
phase in which flavor and parity are spontaneously broken. Recent numerical
results on the spectrum of the overlap Hamiltonian have been interpreted as
evidence against Aoki's conjecture. We show that they are in fact consistent
with the presence of a flavor-parity broken ``Aoki phase''. We also show how,
as the continuum limit is approached, one can study the lattice theory using
the continuum chiral Lagrangian supplemented by additional terms proportional
to powers of the lattice spacing. We find that there are two possible phase
structures at non-zero lattice spacing: (1) there is an Aoki phase of width
with two massless Goldstone pions; (2) there is no
symmetry breaking, and all three pions have an equal non-vanishing mass of
order . Present numerical evidence suggests that the former option is
realized for Wilson fermions. Our analysis then predicts the form of the pion
masses and the flavor-parity breaking condensate within the Aoki phase. Our
analysis also applies for non-perturbatively improved Wilson fermions.Comment: 22 pages, LaTeX, 5 figures (added several references and a comment
Lattice QCD and Hydro/Cascade Model of Heavy Ion Collisions
We report here on a recent lattice study of the QCD transition region at
finite temperature and zero chemical potential using domain wall fermions
(DWF). We also present a parameterization of the QCD equation of state obtained
from lattice QCD that is suitable for use in hydrodynamics studies of heavy ion
collisions. Finally, we show preliminary results from a multi-stage
hydrodynamics/hadron cascade model of a heavy ion collision, in an attempt to
understand how well the experimental data (e.g. particle spectra, elliptic
flow, and HBT radii) can constrain the inputs (e.g. initial temperature,
freezeout temperature, shear viscosity, equation of state) of the theoretical
model.Comment: 10 pages, 12 figures. Proceedings for the 26th Winter Workshop on
Nuclear Dynamics, Ocho Rios, Jamaica, Jan 2-9, 201
Baryon-Baryon Interactions from Lattice QCD
We report on new attempt to investigate baryon-baryon interactions in lattice
QCD. From the Bethe-Salpeter (BS) wave function, we have successfully extracted
the nucleon-nucleon () potentials in quenched QCD simulations, which
reproduce qualitative features of modern potentials. The method has been
extended to obtain the tensor potential as well as the central potential and
also applied to the hyperon-nucleon () interactions, in both quenched and
full QCD.Comment: 6 pages, 10 figures, A plenary talk given at the 5-th International
Conference on Quark and Nuclear Physics, Beijing, September 21-26, 200
Domain Wall Fermions in Quenched Lattice QCD
We study the chiral properties and the validity of perturbation theory for
domain wall fermions in quenched lattice QCD at beta=6.0. The explicit chiral
symmetry breaking term in the axial Ward-Takahashi identity is found to be very
small already at Ns=10, where Ns is the size of the fifth dimension, and its
behavior seems consistent with an exponential decay in Ns within the limited
range of Ns we explore. From the fact that the critical quark mass, at which
the pion mass vanishes as in the case of the ordinary Wilson-type fermion,
exists at finite Ns, we point out that this may be a signal of the parity
broken phase and investigate the possible existence of such a phase in this
model at finite Ns. The rho and pi meson decay constants obtained from the
four-dimensional local currents with the one-loop renormalization factor show a
good agreement with those obtained from the conserved currents
The Weakly Coupled Gross-Neveu Model with Wilson Fermions
The nature of the phase transition in the lattice Gross-Neveu model with
Wilson fermions is investigated using a new analytical technique. This involves
a new type of weak coupling expansion which focuses on the partition function
zeroes of the model. Its application to the single flavour Gross-Neveu model
yields a phase diagram whose structure is consistent with that predicted from a
saddle point approach. The existence of an Aoki phase is confirmed and its
width in the weakly coupled region is determined. Parity, rather than chiral
symmetry breaking naturally emerges as the driving mechanism for the phase
transition.Comment: 15 pages including 1 figur
Nonet Singlet-Octet Mixing Angle, Strange Quark Mass, and Strange Quark Condensate
Two strategies are taken into account to determine the
- mixing angle . (i) First, using the
Gell-Mann-Okubo mass formula together with the - mixing
angle extracted from the data for , and , gave . (ii) Second, from the study of the ratio for
and branching
fractions, we have two-fold solution or
. Combining these two analyses, we thus obtain
. We further compute the strange quark mass
and strange quark condensate from the analysis of the
mass difference QCD sum rule, where the operator-product-expansion series is up
to dimension six and to accuracy.
Using the average of the recent lattice results and the value that we
have obtained as inputs, we get .Comment: 10 pages, 1 table, published versio
Domain-Wall Fermions at Strong Coupling
The DWF formulation becomes increasingly problematic at gauge couplings for
which GeV, where the roughness of the gauge field leads to increased
explicit chiral symmetry breaking (\mres). This problem becomes especially
severe for sufficiently strong coupling where the underlying 4-dimensional
Wilson theory is in the Aoki phase. We review our attempts to find a suitable
modification of the gauge and/or the fermion action which would allow the DWF
method to work reliably at stronger coupling.Comment: 4 pages, 4 figures, Lattice2004(chiral
Pion scattering in Wilson ChPT
We compute the scattering amplitude for pion scattering in Wilson chiral
perturbation theory for two degenerate quark flavors. We consider two different
regimes where the quark mass m is of order (i) a\Lambda_QCD^2 and (ii)
a^2\Lambda_QCD^3. Analytic expressions for the scattering lengths in all three
isospin channels are given. As a result of the O(a^2) terms the I=0 and I=2
scattering lengths do not vanish in the chiral limit. Moreover, additional
chiral logarithms proportional to a^2\ln M_{\pi}^2 are present in the one-loop
results for regime (ii). These contributions significantly modify the familiar
results from continuum chiral perturbation theory.Comment: 20 pages, 4 figures. V3: Comments on finite size effects and the
axial vector current added, one more reference. To be published in PR
A numerical reinvestigation of the Aoki phase with N_f=2 Wilson fermions at zero temperature
We report on a numerical reinvestigation of the Aoki phase in lattice QCD
with two flavors of Wilson fermions where the parity-flavor symmetry is
spontaneously broken. For this purpose an explicitly symmetry-breaking source
term was added to the fermion action.
The order parameter was computed with
the Hybrid Monte Carlo algorithm at several values of on
lattices of sizes to and extrapolated to . The existence of a
parity-flavor breaking phase can be confirmed at and 4.3, while we
do not find parity-flavor breaking at and 5.0.Comment: 8 pages, 5 figures, Revised version as to be published in Phys.Rev.
The s process in massive stars at low metallicity. Effect of primary N14 from fast rotating stars
The goal of this paper is to analyze the impact of a primary neutron source
on the s-process nucleosynthesis in massive stars at halo metallicity. Recent
stellar models including rotation at very low metallicity predict a strong
production of primary N14. Part of the nitrogen produced in the H-burning shell
diffuses by rotational mixing into the He core where it is converted to Ne22
providing additional neutrons for the s process. We present nucleosynthesis
calculations for a 25 Msun star at [Fe/H] = -3, -4, where in the convective
core He-burning about 0.8 % in mass is made of primary Ne22. The usual weak
s-process shape is changed by the additional neutron source with a peak between
Sr and Ba, where the s-process yields increase by orders of magnitude with
respect to the yields obtained without rotation. Iron seeds are fully consumed
and the maximum production of Sr, Y and Zr is reached. On the other hand, the
s-process efficiency beyond Sr and the ratio Sr/Ba are strongly affected by the
amount of Ne22 and by nuclear uncertainties, first of all by the
Ne22(alpha,n)Mg25 reaction. Finally, assuming that Ne22 is primary in the
considered metallicity range, the s-process efficiency decreases with
metallicity due to the effect of the major neutron poisons Mg25 and Ne22. This
work represents a first step towards the study of primary neutron source effect
in fast rotating massive stars, and its implications are discussed in the light
of spectroscopic observations of heavy elements at halo metallicity.Comment: Accepted for publication in ApJ Letters, 11 pages, 2 figures, 1 tabl
- …
