18,746 research outputs found

    Baryon-Baryon Interactions from Lattice QCD

    Full text link
    We report on new attempt to investigate baryon-baryon interactions in lattice QCD. From the Bethe-Salpeter (BS) wave function, we have successfully extracted the nucleon-nucleon (NNNN) potentials in quenched QCD simulations, which reproduce qualitative features of modern NNNN potentials. The method has been extended to obtain the tensor potential as well as the central potential and also applied to the hyperon-nucleon (YNYN) interactions, in both quenched and full QCD.Comment: 6 pages, 10 figures, A plenary talk given at the 5-th International Conference on Quark and Nuclear Physics, Beijing, September 21-26, 200

    Spontaneous Flavor and Parity Breaking with Wilson Fermions

    Get PDF
    We discuss the phase diagram of Wilson fermions in the m0m_0--g2g^2 plane for two-flavor QCD. We argue that, as originally suggested by Aoki, there is a phase in which flavor and parity are spontaneously broken. Recent numerical results on the spectrum of the overlap Hamiltonian have been interpreted as evidence against Aoki's conjecture. We show that they are in fact consistent with the presence of a flavor-parity broken ``Aoki phase''. We also show how, as the continuum limit is approached, one can study the lattice theory using the continuum chiral Lagrangian supplemented by additional terms proportional to powers of the lattice spacing. We find that there are two possible phase structures at non-zero lattice spacing: (1) there is an Aoki phase of width Δm0a3\Delta m_0 \sim a^3 with two massless Goldstone pions; (2) there is no symmetry breaking, and all three pions have an equal non-vanishing mass of order aa. Present numerical evidence suggests that the former option is realized for Wilson fermions. Our analysis then predicts the form of the pion masses and the flavor-parity breaking condensate within the Aoki phase. Our analysis also applies for non-perturbatively improved Wilson fermions.Comment: 22 pages, LaTeX, 5 figures (added several references and a comment

    Lattice QCD and Hydro/Cascade Model of Heavy Ion Collisions

    Full text link
    We report here on a recent lattice study of the QCD transition region at finite temperature and zero chemical potential using domain wall fermions (DWF). We also present a parameterization of the QCD equation of state obtained from lattice QCD that is suitable for use in hydrodynamics studies of heavy ion collisions. Finally, we show preliminary results from a multi-stage hydrodynamics/hadron cascade model of a heavy ion collision, in an attempt to understand how well the experimental data (e.g. particle spectra, elliptic flow, and HBT radii) can constrain the inputs (e.g. initial temperature, freezeout temperature, shear viscosity, equation of state) of the theoretical model.Comment: 10 pages, 12 figures. Proceedings for the 26th Winter Workshop on Nuclear Dynamics, Ocho Rios, Jamaica, Jan 2-9, 201

    Domain Wall Fermions in Quenched Lattice QCD

    Get PDF
    We study the chiral properties and the validity of perturbation theory for domain wall fermions in quenched lattice QCD at beta=6.0. The explicit chiral symmetry breaking term in the axial Ward-Takahashi identity is found to be very small already at Ns=10, where Ns is the size of the fifth dimension, and its behavior seems consistent with an exponential decay in Ns within the limited range of Ns we explore. From the fact that the critical quark mass, at which the pion mass vanishes as in the case of the ordinary Wilson-type fermion, exists at finite Ns, we point out that this may be a signal of the parity broken phase and investigate the possible existence of such a phase in this model at finite Ns. The rho and pi meson decay constants obtained from the four-dimensional local currents with the one-loop renormalization factor show a good agreement with those obtained from the conserved currents

    Nucleon-nucleon interactions via Lattice QCD: Methodology --HAL QCD approach to extract hadronic interactions in lattice QCD--

    Full text link
    We review the potential method in lattice QCD, which has recently been proposed to extract nucleon-nucleon interactions via numerical simulations. We focus on the methodology of this approach by emphasizing the strategy of the potential method, the theoretical foundation behind it, and special numerical techniques. We compare the potential method with the standard finite volume method in lattice QCD, in order to make pros and cons of the approach clear. We also present several numerical results for the nucleon-nucleon potentials.Comment: 12 pages, 10 figure

    Observations on discretization errors in twisted-mass lattice QCD

    Full text link
    I make a number of observations concerning discretization errors in twisted-mass lattice QCD that can be deduced by applying chiral perturbation theory including lattice artifacts. (1) The line along which the PCAC quark mass vanishes in the twisted mass-twisted mass plane makes an angle to the untwisted mass axis which is a direct measure of O(a) terms in the chiral Lagrangian, and is found numerically to be large; (2) Numerical results for pionic quantities in the mass plane show the qualitative properties predicted by chiral perturbation theory, in particular an asymmetry in slopes between positive and negative untwisted quark masses; (3) By extending the description of the ``Aoki regime'' (where m_q is of size a^2 Lambda_QCD^3) to next-to-leading order in chiral perturbation theory I show how the phase transition lines and lines of maximal twist (using different definitions) extend into this region, and give predictions for the functional form of pionic quantities; (4) I argue that the recent claim that lattice artifacts at maximal twist have apparent infrared singularities in the chiral limit results from expanding about the incorrect vacuum state. Shifting to the correct vacuum (as can be done using chiral perturbation theory) the apparent singularities are summed into non-singular, and furthermore predicted, forms. I further argue that there is no breakdown in the Symanzik expansion in powers of lattice spacing, and no barrier to simulating at maximal twist in the Aoki regime.Comment: 20 pages, 6 figures. Published version. More typos corrected, and summary paragraph added to sections II and I

    Composite components under impact load and effects of defects on the loading capacity

    Get PDF
    Investigations were carried out on a horizontal tail assembly made of carbon fiber reinforced plastic for the Alpha Jet. The possibility of obtaining a leading edge nose design lighter but not more expensive than a metal version was studied. An important consideration was sufficient resistance of the leading edge against impact of stones and hailstones combined with high degree of stiffness. The improvement of energy reception characteristics of the materials through suitable laminate design was considered. Since certain defects occur in structural components, the effects of such defects on the characteristics of the parts were also studied

    The Weakly Coupled Gross-Neveu Model with Wilson Fermions

    Get PDF
    The nature of the phase transition in the lattice Gross-Neveu model with Wilson fermions is investigated using a new analytical technique. This involves a new type of weak coupling expansion which focuses on the partition function zeroes of the model. Its application to the single flavour Gross-Neveu model yields a phase diagram whose structure is consistent with that predicted from a saddle point approach. The existence of an Aoki phase is confirmed and its width in the weakly coupled region is determined. Parity, rather than chiral symmetry breaking naturally emerges as the driving mechanism for the phase transition.Comment: 15 pages including 1 figur

    Improving Dynamical Domain-Wall Fermion Simulations

    Full text link
    We report on studies of the chiral properties of dynamical domain wall fermions combined with the DBW2 gauge action for different gauge couplings and fermion masses. For quenched theories, the DBW2 action gives a residual chiral symmetry breaking much smaller than what was found with more traditional choices for the gauge action. Our goal is to investigate the possibilities which this and further improvements provide for the study of QCD thermodynamics and other simulations at stronger couplings.Comment: 3 pages, 4 figures, 3 tables, Lattice2003(improve

    1++1^{++} Nonet Singlet-Octet Mixing Angle, Strange Quark Mass, and Strange Quark Condensate

    Full text link
    Two strategies are taken into account to determine the f1(1420)f_1(1420)-f1(1285)f_1(1285) mixing angle θ\theta. (i) First, using the Gell-Mann-Okubo mass formula together with the K1(1270)K_1(1270)-K1(1400)K_1(1400) mixing angle θK1=(34±13)\theta_{K_1}=(-34\pm 13)^\circ extracted from the data for B(BK1(1270)γ),B(BK1(1400)γ),B(τK1(1270)ντ){\cal B}(B\to K_1(1270) \gamma), {\cal B}(B\to K_1(1400) \gamma), {\cal B}(\tau\to K_1(1270) \nu_\tau), and B(τK1(1420)ντ){\cal B}(\tau\to K_1(1420) \nu_\tau), gave θ=(2323+17)\theta = (23^{+17}_{-23})^\circ. (ii) Second, from the study of the ratio for f1(1285)ϕγf_1(1285) \to \phi\gamma and f1(1285)ρ0γf_1(1285) \to \rho^0\gamma branching fractions, we have two-fold solution θ=(19.44.6+4.5)\theta=(19.4^{+4.5}_{-4.6})^\circ or (51.14.6+4.5)(51.1^{+4.5}_{-4.6})^\circ. Combining these two analyses, we thus obtain θ=(19.44.6+4.5)\theta=(19.4^{+4.5}_{-4.6})^\circ. We further compute the strange quark mass and strange quark condensate from the analysis of the f1(1420)f1(1285)f_1(1420)-f_1(1285) mass difference QCD sum rule, where the operator-product-expansion series is up to dimension six and to O(αs3,ms2αs2){\cal O}(\alpha_s^3, m_s^2 \alpha_s^2) accuracy. Using the average of the recent lattice results and the θ\theta value that we have obtained as inputs, we get /=0.41±0.09/ =0.41 \pm 0.09.Comment: 10 pages, 1 table, published versio
    corecore