367 research outputs found

    Association of MMP3 but not TIMP2 gene variants with elite rugby player status and rugby code

    Get PDF
    Introduction: Achilles tendon pathology and anterior cruciate ligament rupture are multifactorial conditions for which genetic risk factors have been identified. Single nucleotide polymorphisms (SNPs) within the MMP3 (rs591058, rs679620, rs650108) and TIMP2 (rs4789932) genes have previously been associated with tendon and ligament pathologies. Although not entirely clear, prior literature indicates the risk alleles for Achilles tendon pathology as T (rs591058), G (rs679620) and A (rs650108) for MMP3. However, prior evidence regarding TIMP2 is equivocal. MMP3 is considered an essential regulator of matrix degradation and remodelling within diseased and normal musculoskeletal soft tissues. TIMP2 maintains homeostasis in the extracellular matrix in part by inhibiting MMP function. Given the high incidence and severity of tendon and ligament injuries in elite rugby athletes, we hypothesised that the aforementioned SNPs would be associated with career success. Methods: Participants from the RugbyGene project were elite Caucasian male rugby athletes (n = 566; mean (standard deviation) height 1.85 (0.07) m, mass 101 (14) kg, age 29 (7) yr), including 420 rugby union (RU) athletes that for some analyses were divided into forwards and backs and 120 rugby league (RL) athletes. Non-athletes were 589 Caucasian men and women (n = 589, 57% male, height 1.72 (0.10) m, mass 74 (14) kg, age 31 (7) yr). PCR of genomic DNA was used to determine genotypes using TaqMan probes, then groups were compared using Χ2 and odds ratio (OR) statistics. Results: As hypothesized, the MMP3 rs591058 risk genotype (TT) was less frequent in rugby athletes (28%) compared to non-athletes (33%) (Χ2 = 7.265, P = 0.026; OR = 1.18, 95% confidence intervals (CI) = 0.86-1.63). No differences were found for MMP3 rs679620, rs650108 or TIMP2 rs4789932 between rugby athletes and non-athletes. When RL athletes were compared to non-athletes, the risk genotype (TT) of MMP3 rs591058 was underrepresented in RL athletes (19%) compared to non-athletes (33%). The MMP3 rs679620 ‘protective’ allele (C) was more frequent in RL athletes (55%) compared to non-athletes (48%) (OR = 1.3, 95% CI = 0.98-1.74). However, for MMP3 rs650108 the ‘risk’ allele (A) was overrepresented in RL athletes (32%) compared to non-athletes (26%). There were no genotype differences for any gene variant between RU athletes and non-athletes. The ‘risk’ allele (T) of the MMP3 rs679629 polymorphism and the ‘protective’ allele (G) of the MMP3 rs650108 polymorphism were less common in RL (45%, 68%, respectively) than RU athletes (54%, 76%, respectively). Conclusion: We provide evidence for elite rugby athletes possessing a protective genetic profile regarding tendon and ligament injury risk. Notably, a less frequent rs591058 TT genotype in athletes suggests a lower risk of injury could therefore enhance career success in rugby. Furthermore, RL players appear to have differing genetic characteristics compared to their RU counterparts, which might reflect some differences in physiological demands between codes.Peer reviewedFinal Published versio

    Association between MAPT polymorphism but not APOE promoter and elite rugby athlete status

    Get PDF
    INTRODUCTION: Incidence and outcomes of concussions have been hypothesised to be genetically influenced. The APOE Promoter G219T (rs405509) polymorphism has been associated with differential promoter activity and unfavourable outcomes after traumatic brain injury. The TT genotype is associated with a 3-fold greater risk of multiple concussions. The TT genotype of MAPT (rs10445337) has also been associated with poorer outcomes after concussion. Rugby has one of the highest incidences of concussion in sport, so it was hypothesised that APOE Promoter TT and MAPT TT genotypes would be less prevalent in elite rugby athletes because those genotypes, previously associated with increased risk, would be less compatible with achieving elite athlete status. METHODS: Participants were from the RugbyGene project, comprising elite Caucasian male rugby athletes (n = 528; mean (standard deviation) height 1.85 (0.07) m, mass 101 (14) kg, age 29 (7) yr), including 420 rugby union (RU) athletes that for some analyses were divided into forwards and backs and 108 rugby league (RL) athletes. Non-athletes were 592 Caucasian men and women (57% male, height 1.72 (0.10) m, mass 74 (14) kg, age 31 (7) yr). PCR of genomic DNA was used to determine genotypes using TaqMan probes, then groups were compared using χ2 and odds ratio (OR) statistics. RESULTS: All genotype data were in Hardy-Weinberg equilibrium. For MAPT (rs10445337), the risk genotype (TT) was underrepresented in rugby athletes (60%) compared to non-athletes (66%), CT more common in rugby athletes (34%) than non-athletes (29%) and little difference in CC genotype frequencies (χ2 = 7.092, P = 0.029; TT genotype frequency OR = 0.80, 95% confidence intervals (CI) = 0.62-1.02). There were no differences in MAPT (rs10445337) genotype frequencies between RU forwards and backs. For APOE Promoter G219T (rs405509), there were no differences in genotype frequencies between all athletes (RU and RL) and non-athletes (27% TT genotype in players and non-athletes), nor between RU forwards and backs. CONCLUSION: The MAPT (rs10445337) TT genotype is 6% less common in elite rugby athletes than non-athletes. Therefore, carrying at least one rs10445337 C allele appears to increase the probability of sustained career success in the high-risk concussion environment of elite rugby, perhaps via a greater ability to recover from concussions.Peer reviewe

    Driven to discussion: engaging drivers in conversation with a digital assistant as a countermeasure to passive task-related fatigue

    Get PDF
    Using a Wizard-of-Oz approach, we explored the effectiveness of engaging drivers in conversation with a digital assistant as an operational strategy to combat the symptoms of passive task-related fatigue. Twenty participants undertook two 30-minute drives in a medium-fidelity driving simulator between 13:00 and 16:30, when circadian and homeostatic influences naturally reduce alertness. Participants were asked to follow a lead-car travelling at a constant speed of 68mph, in a sparsely-populated UK motorway scenario. During one of the counterbalanced drives, participants were engaged in conversation by a digital assistant (‘Vid’). Results show that interacting with Vid had a positive effect on driving performance and arousal, evidenced by better lane-keeping, earlier response to a potential hazard situation, larger pupil diameter, and an increased spread of attention to the road-scene (i.e. fewer fixations concentrated on the road-centre indicating a lower incidence of ‘cognitive tunnelling’). Drivers also reported higher levels of alertness and lower sleepiness following the Vid drive. Subjective workload ratings suggest that drivers exerted less effort to ‘stay awake’ when engaged with Vid. The findings support the development and application of in-vehicle natural language interfaces, and can be used to inform the design of novel countermeasures for driver fatigue

    Lessons from Oz: Design Guidelines for Automotive Conversational User Interfaces

    Full text link
    This paper draws from literature and our experience of conducting Wizard-of-Oz (WoZ) studies using natural language, conversational user interfaces (CUIs) in the automotive domain. These studies have revealed positive effects of using in-vehicle CUIs on issues such as: cognitive demand/workload, passive task-related fatigue, trust, acceptance and environment engagement. A nascent set of human-centred design guidelines that have emerged is presented. These are based on the analysis of users' behaviour and the positive benefits observed, and aim to make interactions with an in-vehicle agent interlocutor safe, effective, engaging and enjoyable, while confirming with users' expectations. The guidelines can be used to inform the design of future in-vehicle CUIs or applied experimentally using WoZ methodology, and will be evaluated and refined in ongoing work.Comment: Accepted to the 11th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI '19

    Distinct and overlapping roles for AP-1 and GGAs revealed by the "knocksideways" system

    Get PDF
    Although adaptor protein complex 1 (AP-1) and Golgi-localized, γ ear-containing, ADP-ribosylation factor-binding proteins (GGAs) are both adaptors for clathrin-mediated intracellular trafficking, the pathways they mediate and their relationship to each other remain open questions [1]. To tease apart the functions of AP-1 and GGAs, we rapidly inactivated each adaptor using the “knocksideways” system [2] and then compared the protein composition of clathrin-coated vesicle (CCV) fractions from control and knocksideways cells. The AP-1 knocksideways resulted in a dramatic and unexpected loss of GGA2 from CCVs. Over 30 other peripheral membrane proteins and over 30 transmembrane proteins were also depleted, including several mutated in genetic disorders, indicating that AP-1 acts as a linchpin for intracellular CCV formation. In contrast, the GGA2 knocksideways affected only lysosomal hydrolases and their receptors. We propose that there are at least two populations of intracellular CCVs: one containing both GGAs and AP-1 for anterograde trafficking and another containing AP-1 for retrograde trafficking. Our study shows that knocksideways and proteomics are a powerful combination for investigating protein function, which can potentially be used on many different types of proteins

    The WDR11 complex facilitates the tethering of AP-1-derived vesicles.

    Get PDF
    Vesicluar transport of proteins from endosomes to the trans-Golgi network (TGN) is an essential cellular pathway, but much of its machinery is still unknown. A screen for genes involved in endosome-to-TGN trafficking produced two hits, the adaptor protein-1 (AP-1 complex), which facilitates vesicle budding, and WDR11. Here we demonstrate that WDR11 forms a stable complex with two other proteins, which localises to the TGN region and does not appear to be associated with AP-1, suggesting it may act downstream from budding. In a vesicle tethering assay, capture of vesicles by golgin-245 was substantially reduced in WDR11-knockout cells. Moreover, structured illumination microscopy and relocation assays indicate that the WDR11 complex is initially recruited onto vesicles rather than the TGN, where it may in turn recruit the golgin binding partner TBC1D23. We propose that the complex acts together with TBC1D23 to facilitate the golgin-mediated capture of vesicles that were generated using AP-1

    Temporal proteomic analysis of HIV infection reveals remodelling of the host phosphoproteome by lentiviral Vif variants

    Get PDF
    Viruses manipulate host factors to enhance their replication and evade cellular restriction. We used multiplex tandem mass tag (TMT)-based whole cell proteomics to perform a comprehensive time course analysis of >6500 viral and cellular proteins during HIV infection. To enable specific functional predictions, we categorized cellular proteins regulated by HIV according to their patterns of temporal expression. We focussed on proteins depleted with similar kinetics to APOBEC3C, and found the viral accessory protein Vif to be necessary and sufficient for CUL5-dependent proteasomal degradation of all members of the B56 family of regulatory subunits of the key cellular phosphatase PP2A (PPP2R5A-E). Quantitative phosphoproteomic analysis of HIV-infected cells confirmed Vif-dependent hyperphosphorylation of >200 cellular proteins, particularly substrates of the aurora kinases. The ability of Vif to target PPP2R5 subunits is found in primate and non-primate lentiviral lineages, and remodeling of the cellular phosphoproteome is therefore a second ancient and conserved Vif function.This work was supported by a Wellcome Trust PRF (101835/Z/13/Z) to PJL and RTF to NJM (093964/Z/10/Z), NHSBT and the NIHR Cambridge BRC, a Wellcome Trust Strategic Award to CIMR, and the Addenbrooke’s Charitable Trust

    Role of clathrin in dense core vesicle biogenesis

    Get PDF
    The dense-core vesicles (DCVs) of neuroendocrine cells are a rich source of bioactive molecules such as peptides, hormones, and neurotransmitters, but relatively little is known about how they are formed. Using fractionation profiling, a method that combines subcellular fractionation with mass spectrometry, we identified ∼1200 proteins in PC12 cell vesicle-enriched fractions, with DCV-associated proteins showing distinct profiles from proteins associated with other types of vesicles. To investigate the role of clathrin in DCV biogenesis, we stably transduced PC12 cells with an inducible shRNA targeting clathrin heavy chain, resulting in ∼85% protein loss. DCVs could still be observed in the cells by electron microscopy, but mature profiles were ∼4-fold less abundant than in mock-treated cells. By quantitative mass spectrometry, DCV-associated proteins were found to be reduced ∼2-fold in clathrin-depleted cells as a whole and ∼5-fold in vesicle-enriched fractions. Our combined datasets enabled us to identify new candidate DCV components. Secretion assays revealed that clathrin depletion causes a near-complete block in secretagogue-induced exocytosis. Taken together, our data indicate that clathrin has a function in DCV biogenesis beyond its established role in removing unwanted proteins from the immature vesicle.This work was funded by grants from the Wellcome Trust: 086598 (to M.S.R.), 100140 (Wellcome Trust Strategic Award), and 093026 (for the FEI Tecnai G2 Spirit BioTWIN transmission EM); and by a National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases grant (R01DK102496) to A.B

    Metabolic oscillations on the circadian time scale in <i>Drosophila</i> cells lacking clock genes.

    Get PDF
    Circadian rhythms are cell-autonomous biological oscillations with a period of about 24 h. Current models propose that transcriptional feedback loops are the primary mechanism for the generation of circadian oscillations. Within this framework, &lt;i&gt;Drosophila&lt;/i&gt; S2 cells are regarded as "non-rhythmic" cells, as they do not express several canonical circadian components. Using an unbiased multi-omics approach, we made the surprising discovery that &lt;i&gt;Drosophila&lt;/i&gt; S2 cells do in fact display widespread daily rhythms. Transcriptomics and proteomics analyses revealed that hundreds of genes and their products, and in particular metabolic enzymes, are rhythmically expressed in a 24-h cycle. Metabolomics analyses extended these findings and demonstrate that central carbon metabolism and amino acid metabolism are core metabolic pathways driven by protein rhythms. We thus demonstrate that 24-h metabolic oscillations, coupled to gene and protein cycles, take place in nucleated cells without the contribution of any known circadian regulators. These results therefore suggest a reconsideration of existing models of the clockwork in &lt;i&gt;Drosophila&lt;/i&gt; and other eukaryotic systems
    corecore