6 research outputs found
Macrostructure of Friction Stir Welds
This paper will discuss two of the well know large scale features of friction stir welds: the "onion rings" seen in transverse sections, and the striations on the surface of the work piece. It will be shown that the surface features (sometimes called "tool marks") are the result of irregularities on the rotating shoulder of the pin tool and disappear when the shoulder is polished. The "onion ring" structure seen in transverse cross sections is formed by parts of the "carousel", the zone of material adjacent to and rotating with the pin tool, that are shed off in each rotation. The relation between the carousel and the "ring vortex", a rotational flow extending both in and out of the carousel and resembling a smoke-ring with the hole centered on the pin tool, will be discussed
Tlx3 exerts context-dependent transcriptional regulation and promotes neuronal differentiation from embryonic stem cells
The T cell leukemia 3 (Tlx3) gene has been implicated in specification of glutamatergic sensory neurons in the spinal cord. In cranial sensory ganglia, Tlx3 is highly expressed in differentiating neurons during early embryogenesis. To study a role of Tlx3 during neural differentiation, mouse embryonic stem (ES) cells were transfected with a Tlx3 expression vector. ES cells stably expressing Tlx3 were grown in the presence or absence of a neural induction medium. In undifferentiated ES cells, there was no significant difference in gene expression in the presence or absence of Tlx3, even after ES cells were cultured for an extensive time period. In contrast, expression levels of Mash1, Ngn1, and NeuroD were significantly higher in Tlx3-expressing cells after neural induction for 4 days compared with those in cells expressing the control vector. At 7 days after neural induction, whereas expression of the proneural genes was down-regulated, VGLUT2, GluR2, and GluR4 were significantly increased in ES cell-derived neurons expressing Tlx3. The sequential and coordinated expression of the proneural and neuronal subtype-specific genes identifies Tlx3 as a selector gene in ES cells undergoing neural differentiation. In addition, the differential effects of Tlx3 overexpression in undifferentiated ES cells compared with ES cell-derived neurons suggest that Tlx3 exerts context-dependent transcriptional signals on its downstream target genes. The context-dependent function of Tlx3 as a selector gene may be used to establish a novel strategy to conditionally generate excitatory glutamatergic neurons from ES cells to cure various types of neurodegenerative disorders
Localization in wireless sensor networks: Classification and evaluation of techniques
Recent advances in technology have enabled the development of low cost, low power and multi functional wireless sensing devices. These devices are networked through setting up a Wireless Sensor Network (WSN). Sensors that form a WSN are expected to be remotely deployed in large numbers and to self-organize to perform distributed sensing and acting tasks. WSNs are growing rapidly in both size and complexity, and it is becoming increasingly difficult to develop and investigate such large and complex systems. In this paper we provide a brief introduction to WSN applications, i.e., properties, limitations and basic issues related to WSN design and development. We focus on an important aspect of the design: accurate localization of devices that form the network. The paper presents an overview of localization strategies and attempts to classify different techniques. A set of properties by which localization systems are evaluated are examined. We then describe a number of existing localization systems, and discuss the results of performance evaluation of some of them through simulation and experiments using a testbed implementation