15,938 research outputs found
Method of fan sound mode structure determination computer program user's manual: Modal calculation program
A computer user's manual describing the operation and the essential features of the Modal Calculation Program is presented. The modal Calculation Program calculates the amplitude and phase of modal structures by means of acoustic pressure measurements obtained from microphones placed at selected locations within the fan inlet duct. In addition, the Modal Calculation Program also calculates the first-order errors in the modal coefficients that are due to tolerances in microphone location coordinates and inaccuracies in the acoustic pressure measurements
Method of fan sound mode structure determination computer program user's manual: Microphone location program
A computer user's manual describing the operation and the essential features of the microphone location program is presented. The Microphone Location Program determines microphone locations that ensure accurate and stable results from the equation system used to calculate modal structures. As part of the computational procedure for the Microphone Location Program, a first-order measure of the stability of the equation system was indicated by a matrix 'conditioning' number
Establishing an energy scale for pulse-height distributions from gamma-ray spectrometers based on inorganic scintillators
Energy scale for pulse height distributions from gamma ray spectrometers based on inorganic scintillator
Early Pathways Therapy for Young Children in Poverty: A Randomized Controlled Trial
Early Pathways is a home-based, parent and child therapy program for the treatment of disruptive behaviors among young children living in poverty. In this study, 199 clinically referred children were randomly assigned to an immediate treatment (IT) or wait-list control (WL) conditions. Results indicated that parents in the IT condition reported significant improvements in their child’s disruptive and prosocial behaviors and increased nurturing and decreased use of corporal and verbal punishment by their parents compared to the WL families. Gains were maintained for children in both the IT and WL conditions at 3-month follow-up
Realizable Hamiltonians for Universal Adiabatic Quantum Computers
It has been established that local lattice spin Hamiltonians can be used for
universal adiabatic quantum computation. However, the 2-local model
Hamiltonians used in these proofs are general and hence do not limit the types
of interactions required between spins. To address this concern, the present
paper provides two simple model Hamiltonians that are of practical interest to
experimentalists working towards the realization of a universal adiabatic
quantum computer. The model Hamiltonians presented are the simplest known
QMA-complete 2-local Hamiltonians. The 2-local Ising model with 1-local
transverse field which has been realized using an array of technologies, is
perhaps the simplest quantum spin model but is unlikely to be universal for
adiabatic quantum computation. We demonstrate that this model can be rendered
universal and QMA-complete by adding a tunable 2-local transverse XX coupling.
We also show the universality and QMA-completeness of spin models with only
1-local Z and X fields and 2-local ZX interactions.Comment: Paper revised and extended to improve clarity; to appear in Physical
Review
In-Home Counseling for Young Children Living in Poverty: An Exploration of Counseling Competencies
Home-based counseling is increasingly an alternative mode of providing counseling services for children and families, reduces barriers to accessing traditional counseling services, and has also been shown to be effective. As such, the purpose of this qualitative study was to explore and describe the competencies needed to provide such counseling services. This study yielded five categories of competencies—necessary knowledge sets, case conceptualization, counseling behaviors, flexibility in session, and professional dispositions and behaviors. We also outline implications for counseling practice, counselor education, and public policy
Study of shuttle imaging microwave system antenna. Volume 1: Conceptual design
A detailed preliminary design and complete performance evaluation are presented of an 11-channel large aperture scanning radiometer antenna for the shuttle imaging microwave system (SIMS) program. Provisions for interfacing the antenna with the space shuttle orbiter are presented and discussed. A program plan for hardware development and a rough order of magnitude (ROM) cost are also included. The conceptual design of the antenna is presented. It consists of a four-meter diameter parabolic torus main reflector, which is a graphite/epoxy shell supported by a graphite/epoxy truss. A rotating feed wheel assembly supports six Gregorian subreflectors covering the upper eight frequency channels from 6.6 GHz through 118.7 GHz, and two three-channel prime forms feed assemblies for 0.6, 1.4, and 2.7 GHz. The feed wheel assembly also holds the radiometers and power supplies, and a drive system using a 400 Hz synchronous motor is described. The RF analysis of the antenna is performed using physical optics procedures for both the dual reflector Gregorian concept and the single reflector prime focus concept. A unique aberration correcting feed for 2.7 GHz is analyzed. A structural analysis is also included. The analyses indicate that the antenna will meet system requirements
Absolute Efficiency Measurements of NE-213 ORGANIC Phosphors for Detecting 14.4 and 2.6 Mev Neutrons
Efficiency measurements of organic phosphor scintillator for detecting 14.4 and 2.6 MeV neutron
Resonant Bend Loss in Leakage Channel Fibers
Leakage channel fibers, designed to suppress higher-order modes, demonstrate
resonant power loss at certain critical radii of curvature. Outside the
resonance, the power recovers to the levels offset by the usual mechanism of
bend-induced loss. Using C-imaging, we experimentally characterize this
anomaly and identify the corresponding physical mechanism as the radiative
decay of the fundamental mode mediated by the resonant coupling to a cladding
mode.Comment: 3 pages, 4 figures, submitted to Optics Letter
The Bravyi-Kitaev transformation for quantum computation of electronic structure
Quantum simulation is an important application of future quantum computers
with applications in quantum chemistry, condensed matter, and beyond. Quantum
simulation of fermionic systems presents a specific challenge. The
Jordan-Wigner transformation allows for representation of a fermionic operator
by O(n) qubit operations. Here we develop an alternative method of simulating
fermions with qubits, first proposed by Bravyi and Kitaev [S. B. Bravyi, A.Yu.
Kitaev, Annals of Physics 298, 210-226 (2002)], that reduces the simulation
cost to O(log n) qubit operations for one fermionic operation. We apply this
new Bravyi-Kitaev transformation to the task of simulating quantum chemical
Hamiltonians, and give a detailed example for the simplest possible case of
molecular hydrogen in a minimal basis. We show that the quantum circuit for
simulating a single Trotter time-step of the Bravyi-Kitaev derived Hamiltonian
for H2 requires fewer gate applications than the equivalent circuit derived
from the Jordan-Wigner transformation. Since the scaling of the Bravyi-Kitaev
method is asymptotically better than the Jordan-Wigner method, this result for
molecular hydrogen in a minimal basis demonstrates the superior efficiency of
the Bravyi-Kitaev method for all quantum computations of electronic structure
- …