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PREFACE

This report on the problems associated with calibration of scintil-
lation gamma-ray spectrometers was completed in the fall of 1965 as a |
chapter for a multi-author review book on the scintillation spectroscopy
of gamma radiation. Publication of this book has been delayed, so the

isolated chapter is offered here after minor revision.

The text is directed at the beginner in scintillation spectrometry
who has a general knowledge of the physics and technology of scintilla-
tion counting. The necessary background and coordinate information may

be found in earlier works such as those listed below:

(a) G. D. O'Kelley, "Gamma-Ray Scintillation Spectrometry," pp 616-
641 in Methods of Experimental Physics, Vol. 5, Part A, edited by Luke
C. L. Yuan and Chien-Shiung Wu, Academic Press (1961).

(b) R. B. Murray, "Scintillation Counters," pp 82-165 in Nuclear
Instruments and Their Uses, edited by A. H. Snell, Wiley (1962).

(¢) J. B. Birks, The Theory and Practice of Scintillation Counting,
MacMillan, New York (1964) Chaps. 4, 5, 11, 12, and 16.

(d) J. H. Neiler and P. R. Bell, "The Scintillation Method," pp
245-302 in @-B-y-Ray Spectroscopy, edited by Kai Siegbahn, North Holland
Publishing Co. (1965).




ESTABLISHING AN ENERGY SCALE FOR PULSE-HEIGHT DISTRIBUTIONS
FROM GAMMA-RAY SPECTROMETERS BASED ON INORGANIC SCINTILLATORS

R. W. Peelle and T. A. Love

ABSTRACT

Devices, experiment designs, and data analysis techniques useful
for the calibration of scintillation gamma-ray spectrometers are criti-
cally examined. Though the ideas have broader application, the discus-
sion assumes the use of NaI(Tl) phosphors. The review of calibration
sources includes tables of gamma-emitting radioisotopes employable for
this purpose, with best energies, uncertainties, and other convenient
data. The branching ratios among the naturally mixed x-ray lines (K-L
vs K-M + K-N) are tabulated for useful radioisotope x-ray sources to
enable use of a simple method given for determining the appropriate
"effective" energy of the mixed source. The origins of spectrometer
instability and nonlinearity are reviewed along with their relative
importances, and defensive experiment designs and data analysis techniques
are discussed. For finding the central position of the peak in a pulse-
height distribution from gamma rays of a single energy, all the standard
numerical and graphical methods are illustrated and compared, including
full and partial nonlinear least-squares analyses. Finally, interpola-
tion methods are detailed for determining from the available calibration

information an unknown gamma-ray energy and its uncertainty.




I. INTRODUCTION

The energies of gamma rays may be determined using scintillation

spectrometers based on phosphors by employing the techniques discussed

in this report. Gamma-ray scintillation spectrometry is relative spec-
trometry, since it is impossible to determine the absolute relation
between energy absorbed in a scintillator and the resulting quantity of
emitted light without the use of a source which emits gamma-rays of known
energy. The scintillation spectroscopist relates unknown gamma-ray
energies to known ones by observing accumulated pulse-height frequency
functions representing sequences of light flashes produced when a scin-
tillator is exposed to sources of these gamma rays. The gamma-ray energy

scale is based on magnetic and crystal diffraction spectrometry.

A series of gamma rays of energy E(MeV) produces by means of a
scintillation spectrometer a recorded distribution of pulse heights N(p)
(counts per pulse-height channel of unmeasured but stable width). Each
observed pulse amplitude p is related statistically to an energy-
absorption event in the scintillator. N(p) for a source of monoenergetic
gamma rays typically includes a nearly normal distribution of pulse
heights corresponding to absorption in the scintillator of the full
energy E, as well as a distribution of smaller pulses. We call the mean
of the normal distribution P no matter how it has been determined. The
function P(E), sampled by determining P, from Ni(p) for each of a series
of source energies Ei’ has long been known to approximate a straight line
through the origin over the range of gamm-ray energies readily available

from radicactive sources.

A beginning spectroscopist using quite standard equipment can measure
the energy of a monoenergetic gamma-ray source within 1 or 2% on the first
try. Using a few radioactive gamma-ray sources usually to be found
around every nuclear laboratory, he can obtain calibration pulse-height
spectra which represent the energy-loss distributions>in the scintillator.
If the apparent pulse-height position of the center of each full-energy
peak is plotted against the energy listed for that source in a standard
reference work and if not too many points are plotted, a straight line

can usually be laid within a reasonable distance of all points. The




full-energy peak of the unknown yields the desired energy upon examina-
tion of the plotted line, with an uncertainty which might be suggested
by repeating the whole process with a few extra calibration points.
Why do such first efforts seem not to give error estimates as small as
those claimed by experienced spectroscopists in the literature? How
well can extensions of the above process be carried out? This report

attacks such questions.

Experienced workers sometimes quote gamma-ray energy determinations
by scintillation spectrometry to claimed standard deviations of 0.1%.
Such precision is remarkable because this uncertainty may be only 1 or
2% of the width of the full energy peak in the unknown's pulse-height
distribution. One can almost promise that sufficiently careful work will
result in plausible error estimates no greater than 0.4% in energy over
a wide energy region from perhaps 100 keV to L MeV, 1if reasonable statis-

tical accuracy is possible and the unknown "line" is reasonably isolated.

Both expert and novice find that the major attention in reducing
experimental uncertainty must be directed toward obtaining reliable and
fully understood pulse-height distributions from gamma rays of both
standard and unknown energies. Problems of stability in the observed
pulse-height distributions are followed closely in importance by
gquestions concerning the linearity of the obtained P(E) vs E "calibration
curve." Even the choice of suitable standard energies on which to base
interpolation is fraught with uncertainty since too few usable gamma rays

have energies known beyond question to uncertainties smaller than 0.05%

The design of appropriate experimental and analytical methods depends
upon the required accuracy, the nature and energy range of the unknown
gamma-ray spectrum, the availability of proper calibration sources and
spectrometer instruments, and perhaps the existence of special environ-
mental difficulties such as high background rates or fluctuations in

ambient temperature or magnetic field.

The purpose here is to aild the inexperienced spectroscopist who has
determined that his needs are not met by elementary techniques. We

discuss the major difficulties which inhibit precise results and how




each may be mitigated, though experimenters readily conquer most of them
as soon as their origins are recognized. An attempt is made to assess
test and data analysis methods for adequacy and difficulty. Similar
questions have been attacked by Julke et al. and Heath et al. (Jub2,
Heb5).

While all references here are to the use of NaI(Tl) scintillators,
nearly all the ideas are applicable to CsI(Tl) and many are applicable

to lithium-drifted germanium spectrometry.

IT. GAMMA-RAY SOURCES FOR ENERGY CALIBRATION

Since the scintillation spectrometrist measures relative energies,
he continually requires convenient gamma-ray sources of known energy,
where "convenient" and "known" are defined for a particular experiment.
When calibration sources must be mounted to preserve the geometry used
for measurements of an unknown source, use of otherwise appropriate

calibrations may be precluded.

The tables in Sects. B and C below 1list the transitions which have
proved useful. Some lines which have well-determined energy have been
omitted because they are not isolated from their neighbors, because they

are too weak, or because the material has an inconvenient decay period.

A. Nuclear Reaction Sources

Reaction calibration standards are convenient when the spectrum
under investigation is produced in a similar reaction. Nordhagen (No6l)
lists a series of gamma rays from proton capture, and Jarczyk (JaGl)
compares such sources with those neutron capture gamma rays between 3.5
and 10.8 MeV which are readily obtained by pile neutron capture. In
these cases the energy precision is not given. Robinson et al. (Ro65)

list a series of gamma-ray energies observed through Coulocmb excitation.

Most of the gamma-emitting levels in light nuclei may be reached
by a variety of reactions, and the level properties are tabulated from
time to time (Aj59). The most commonly used levels seem to be the 6.1-
and T.1-MeV levels in *°0 reached by the 19F(p,a) reaction, and the



4.43-MeV level in '®C reached by inelastic scattering and the 'B(p,y)

and °Be(a,n) reactions, the last often with natural alpha emitters.

B. Radioisotope Gamma-Ray Sources

Table 1 gives the important properties of pertinent radiocisotope
gamma-ray emitters. The listed energy values are heavily influenced by
the precision magnetic spectrometer work of Murray, Graham, and Geiger
(Mu65) and by the germanium detector values of Robinson et al. (Ro65).
It is a tribute to the careful error estimates by earlier workers that
the new values do not too frequently conflict with the old. In some
cases insufficient information was given in the older work to allow
correction for minor changes in calibration lines or fundamental con-
stants. A number of the energies have been measured only once with
care; others are not so precise as required.® The miscellaneous infor-
mation included about each emitter is largely from the Nuclear Data
Sheets (Nub65) but it is not intended to be definitive or adequately

accurate for intensity calibrations.

C. Radioisotope X-Ray Sources

The question of x-ray energies is considerably more complex than
that of gamma-ray energies because the undiffracted spectrum of x rays
following electron capture or internal conversion is composed of several
monoenergetic lines of noticeably different energy. Yet the spectrom-
etrist may need to calibrate in the region below 100 keV, where x-ray
sources are plentiful but isolated monoenergetic gamma rays are rela-
tively rare. Use of appropriate x-ray diffraction apparatus can resolve

this dilemma.

As examples, consider the relative abundances of the x rays resulting
directly from a K-shell vacancy in 109Ag and in EOSTl, given in Table 2.
Compared with typical scintillation spectrometry resolutions of 7 and
12 keV, the energies of the components range over 3 and 11 keV, respec-

tively. Since the combined relative abundance of the higher energy K

*Tt seems that the prominent gamma rays from the following isotopes
should be measured or remeasured to relative accuracy better than 107%:
7 Be, 54Mn, 51 (. BSSr, 95y, 128mpe  113gy, 1141y, and 465,
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Table 2. Energies and Relative Abundances of K X-Rays in
199pg and ®°%T1, from Wa59. Similar data are readily avail-
able in Sa58. This table illustrates why care must be used in
selection of an effective energy for undiffracted K x rays.

IOQAg 203Tl
Energy Energy
Line (kev) Abundance (kev) Abundance

K-LIII 22.16 1000 72.87 1000
K-Loo 21.99 506 70.83 551

) \
K-Mpq 2L.oh 82.57
K-M_ ; By 2,91 f 253 82.11 > 352
K- : 25.1h | 83.04

) ! J
K-NIII\ 84.92°

N Bé 25.46 - L9 99

K-Npp | / 8+.81,
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group is 1/6 for the lighter element and almost 1/4 for the heavier, the
consequent distortion of the scintillation pulse-height spectrum is more

serious for x rays from the heavier elements.

Figure 1 illustrates the distorted line shape observed for K x rays
from heavy elements. For illustration the Kd and X components have
each been lumped to appear as single lines. The limited energy range
within each group allows each component to be represented with small error
as a menoenergetic x ray at the average energy of the group.* But use of
the average energy of the composite x-ray line structure would be guite
hazardous for the example of Fig. 1, since the Ka and K groups differ
by the full resolution. Stated otherwise, the K group is displaced
about 1.6 unbroadened standard deviations from tie average energy of
74.6 keV. Figure 1 suggests that spectrometrists using undiffracted x
rays for calibration should report what effective energies were adopted.
Here an "effective" energy is one chosen so that the resulting spectrom-
eter calibration is the same as would have been obtained by using a

monoenergetic photon source.

The proper choice of an effective energy depends upon the method to
be employed for locating peak positions for energy calibration. Regard-
less of the method used, the possibility of fabricating the approximate
shape of the expected pulse-height distribution allows the following
general method to be used for determination of x-ray effective energies.

1. Split the known x-ray line spectrum into at least two groups,

and plot on an energy scale the expected pulse-height distribution as

*The following properties hold if two normal distributions having standard
deviation o  are summed, the first having weight p and mean D , the second
having weight (1 - p) and mean D,. The sumed (not folded!) distribution
(a) has ameanp =p p, + (1 -p) Dy,
(b) has a variance o® = o5[1 + (P2 - P)°(1 - p)/(05p)]
-G+ (B - BB - Bo)/B),
(¢) may be expressed in terms of y = (p ~ p)/o,, € = (P - p)/o,, and
€= (L-p)pas £f(p) dp = dy [1 + E(% - 1)e*/2 - gy(2 -
exp(-y2/2)//2n. For e<l, this expansion implies a shift in the apparent
peak position P of AP = Lob§(2 - p)63/3, measured from the average energy
p, if the peak position is estimated at the ordinate where the distri-
bution has width 20,. Approximations (c) is quite adequate for estimating
the effects from superimposed pulse height distributions whenever the
quoted three terms of the Taylor expansion are sufficient.

p)(3 - ¥ )®/6...]
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Figure 1. A Differential Pulse-Height Spectrum of °°3T1 K X Rays Observed
in the Decay of 203Hg. The pulse-height scale is given in energy
units. The dashed curves are normal distributions centered at the
average energies of the Ky and the X ray groups, with relative
areas chosen from the intensity data of Sa58. The (~12 keV) widths
of these components correspond to Poisson distributions having three
"effective" photoelectrons per keV, "effective" implying that other
sources of variance are ignored. The solid curve is the sum of
these components. The points are normalized experimental data from
a 1-3/b-in.-diam, 1l-in.-thick NaI(T1l) detector obtained in coinci-
dence with K-conversion electrons. In the 84-keV region about one
third of the discrepancy between points and curve can be explained
by the approximation lumping the K-M and K-N x rays, while the tail
at low energy is assumed to arise from scattered x rays, photoelec-
tron escape, and iodine x-ray escape. The remaining discrepancy
near 84 keV can be explained by uncertainties in the relative intensi-
ties of the various x-ray components. (In fact Wiq = 0.24 was used
in preparing this figure rather than the more favorable value in
Table 4.)



the sum of normal distributions, using an instrument resolution appro-

priate to the spectrometer being calibrated.

2. Apply to the computed spectrum whatever method of peak posi-
tion location is to be employed on the comparable experimental pulse-
height spectra. This yields the effective energy for a particular method,
x-ray emitter, and resolution function. While likely weaknesses of the
effective energy method are apparent, 1t does cope realistically with

the asymmetric line shape.

Table 3 gives necessary data for x rays from a series of available
radioisotopes. Note how the effective energies listed,* chosen for the
spectrometer of Fig. 1, differ from the average energy or that of any
strong component. So that the reader may conveniently determine effective
energies for his own spectrometer, data are listed for a two-component
spectral decomposition of each x ray. The given intensity ratios are
appropriate when the scintillator detection efficiency is constant over
the group of x rays from a given element. For scintillators not too
thin, constancy would be assured except for the escape of K fluorescence
radiation from iodine atoms in the scintillator. The relative area in
the "escape peak" of the pulse distribution depends on the typical depth
of penetration of the primary radiation into the scintillator. The
effect of escape on the full-energy pulse distribution is therefore
largest for lanthanum, barium, and cesium emitters, because for these
the iodine K edge (33.17 keV) falls between the K, and K groups of the
incident spectrum. Few escapes result for the K

B
30% of the Ka rays give pulses in escape peaks. Thus the relative escape

components, but perhaps

intensity (see Ax5h, Lish, Mo58) for the scintillator geometry employed

should be considered in estimating x-ray effective energies.

III. SPECTROMETER INSTABILITY

Spectrometer instability more often limits success in energy cali-

bration than does inadequate data analysis or any other experimental

#For determining these energies, points along the sides of the peaks were
fitted to straight lines by eye, and the peak position was taken as the
midpoint between these lines at 70% of the maximum ordinate. All compo-
nents were assumed to have equal efficiency in the scintillator.
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difficulty. In the paragraphs below we attempt to bring each origin of
drift to the reader's attention and indicate the paths toward its

control.

A. TImportant Origins of Instability

A drift is any unplanned change in the experimental apparatus which
alters the mean recorded pulse height for a given energy loss in the
phosphor. The destructive drifts are those which occur during an experi-
ment, but continuous drift logging can aid identification of troubles.
The pulse-height response of the system is characterized by the system
gain, the extrapolated pulse height at zero energy, and any nonlinearity
parameters.¥ The 'zero" is usually affected only by electronic drifts
in the pulse-height analyzer, but the other characteristics are subject
to drifts generated at every link in the chain of energy and signal
transfer processes between the gamma-ray interaction and the recorded

pulse height.

Fortunately, all possible origins of instability are not important.
Nearly all drifts in high-voltage supplies, linear electronics, and
pulse-height analyzers can be traced to component decay, input line
voltage or frequency changes, temperature or magnetic field shifts, or
effects from high counting rates which are generally of an understandable
nature. Those drifts in photomultiplier output not produced by dynode
voltage or ambient temperature or magnetic field changes are by contrast
rather difficult to understand or correct, and tend to provoke demoniacal

explanations.

Component decay is less important now than formerly because short-

term drifts from scintillator packaging can now be neglected, and tran-
sistors do not decay rapidly. However, component drifts in places such
as the phototube voltage divider still contribute to the class of drifts

never traced to their origins.*¥%

#Some pulse-height analyzers contain a number of drift-sensitive levels,
such as edges of individual pulse-height channels. The description
given would have to be extended to cover this case.

¥*Why are carbon resistors still used in phototube voltage dividers?
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Power line voltage stability is very important for "vacuumized"

electronics because it affects filament temperature. Sensitivity to

line voltage is easy to check by varying it with an autotransformer
while observing the output. Constant-voltage transformers or other line-
voltage-regulating devices can eliminate this source of drift, but the
experimenter should familiarize himself with all the specifications of
such equipment before using it. Constant-voltage transformers are good
for regulation against input changes, typically 1%/15% line change, and
may have a temperature regulation of 0.025%/00. Sometimes, however,

they show alarming sensitivity to load shifts, and are rated for as much
as 8% change per factor of 2 load change. It is important that variable-
1load equipment such as timing clocks not be connected onto such regulated
supplies. Constant-voltage transformers may change output voltage 2%

for a 1% change in line frequency.

Temperature drifts are important both in the linear electronics and

in the scintillator-phototube assembly. Typically quoted drifts in both
cases suggest the importance of the scintillation spectrometrist becoming

an expert in temperature control.

Popular pulse-height analyzers are advertised to have temperature
stabilities betwzen 0.3 and 0.2%/00. Similarly, commercial amplifiers
are claimed to have stabilities from 0.01 to O.l%/oC. Since temperature
changes as large as SOC are hard to avoid in the electronics, the larger

coefficients pose a limitation of accuracy.

NaI(Tl) scintillators at the usual activator concentration show
marked negative temperature coefficients for both light output and decay
time. Startsev et al. (St60) using a particular phototube observed a
(-0.12 + 0.03)%/°C coefficient for crystals of nominal O.1 mole %
thallium concentration for temperatures above OOC. Startsev also observed
a shift in the decay time of the main (0.3 usec at 2OOC) light component
of about -2%/OC near room temperature. Thus the observed combined
temperature coefficient depends on the operating temperature and the
amplifier clipping time. It may also depend on the phototube spectral
sensitivity, since Van Sciver (Se56) has shown a temperature dependence

of the NaI(Tl) emission spectrum in the 3500-8 region.
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The temperature coefficient of phototubes is confused by the variety
of photocathode and dynode materials employed. Furthermore, when tubes
are operated at reduced temperature, both the user and the investigator
of temperature coefficients may be confounded by the high resistivity of
Cs -Sb photocathode material at low temperatures (Re63). Mott and Sutton
(M058,p98) sumarized the earlier work on popular phototubes, giving
values near room temperature from +O.l%/OC to -0.5%/00. Murray and
Manning (Mu60) seem to have resolved the gross discrepancy by studying
the response as a function of wavelength, showing that the sensitivity
of all the tubes studied shifted toward the blue at low temperatures.
Murray's data for tubes with Cs-Sb cathodes appear to show temperature
coefficients at 4300 & [peak of NaI(Tl) emission] in the range -0.12%/°C
(RCA-2020) to -0.14%/°C (RCA-6655 and Dumont K-1428) over the temperature
region from O to EOOC. Since temperature performance may change from
one tube to the next of a given type, the differences between the tube
types listed may not be real. Murray's results can therefore be inter-
preted practically (for Cs-Sb photocathodes) as indicating that equipment
should be designed for a coefficient of about -0.4%/°C.

Rohde (Ro65a) has recently studied the temperature sensitivity of
a NaI(Tl) scintillator and phototube system. He found a variable tempera-
ture coefficient of roughly -l%/OC in the region Jjust above 20°¢ for
the tubes studied, with a flatter dependence or even a positive coeffi-
cient at slightly lower temperatures. Conner and Hussain (Co60) observed
coefficients in the same range. Rohde's results may not be inconsistent
with the roughly —O.S%/OC obtained by combining the NaI(Tl) and phototube
results quoted in the paragraphs above. In either case detector tempera-

ture sensitivity is a primary stability problem.

Magnetic field changes at the phototube can be a serious cause of

concern if a fixed energy calibration must be retained while moving the
phototube or otherwise altering its magnetic environment.®* Most of the
sensitivity probably orginates between the photocathode and the first

dynode, the magnetic field causing a number of electrons to miss the

¥Steel hand tools should not be placed temporarily near a phototube in use.
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first dynode. Literature published by phototube and magnetic shield

manufacturers never seems adequate for experiment design, so one must
perform empirical checks by changing the magnetic surroundings the maxi-
mum plausible amount while looking for gain changes. Curves given for
some phototubes at one orientation indicate up to a 50% drop in gain
when a l-gauss field is applied, and a few percent shift for a tenth of
a gauss (En52, Mi52). Connor and Hussain (Co60) report less sensitivity
than this for some Dumont tubes with axial fields, and give some shield-
ing data. Where only the earth's field is concerned, a standard high

permeability magnetic shield may suffice.

Count-rate sensitivities are a tricky source of drifts. Under this

heading we include effects from changes in averaged pulse current any-
where in the circuit, but not distortions of the spectrum from pile-up

effects in which a pulse "rides" close upon the previous one.

First we discuss the effect of high counting rates on electronics.¥®
Ignoring pile-up per se, the most serious effects usually arise from
baseline shift (Fab2) in ac-coupled linear stages. This danger has
been met by the use of bipolar pulses in many present amplifier designs
and by the use of nonlinear baseline restoring circuits in some multi-
channel analyzer inputs. A baseline shift in the observed speétrum is
generated with unipolar pulses if RC coupling leads into a discriminator
stage, because the signal voltage across the input resistor will average
zero. Thus if l-psec unipolar rectangular pulses were employed, a
repetition rate of 10 pulses/sec would give a baseline shift of l% of
the pulse height. The l% shift would appear as a zero change to the
discriminator, which would still measure from ground potential rather
than from the depressed baseline. This analysis assumes that RC is

greater than the average pulse spacing.

Numerous designs have been offered for phototube dynode voltage

supplies that are claimed to be stable at relatively high phototube

¥We neglect the question of overioad effects, which has been discussed
by Fairstein (Fa62). Here, grid current, transistor saturation, etec.,
compound the difficulties and-can lead to apparent changes in the
position as well as the shape of the pulse-height distribution being
analyzed.
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currents. Nonlinear voltage-regulating elements can be used, but the
usual method is to assure that the bleeder current in a conventional
resistive divider chain is very much larger than the maximum average
phototube current. If phototube currents are not negligible, dynode
voltages shift to produce larger phototube gain at high counting rates.*
This effect may always be reduced by lowering the high voltage on the
electron multiplier and increasing the electronic gain. Voltage on

each dynode 1s normally stabilized during a pulse by means of bypass

capacitors, which should be carefully sized to avoid nonlinearity.

Phototube gain shifts and fatigue are induced in the tubes them-

selves when they are operated at appreciable counting rates. No other
difficulty has driven so many workers to the use of automatic stabilizers.
In their pioneer 1947 article, Marshall et al. (Mak7) state: "Since
fatigue is inherent, its presence must be recognizéd and dealt with
cleverly if the photomultiplier x-ray detector is to be used as a pre-
cision instrument.¥*¥* Fatigue and/or instantaneous shift effects have
been shown to depend on photocathode and dynode materials as well as
production processes, counting rate, phototube gaih, history of usage,
and ambient temperature. Though each tube is unique, students have been
able to associate typical behavior patterns with given tube types and
divide the observed gain changes between nearly instantaneous reversible
shift and largely reversible fatigue which occurs over a matter of hours.
Each effect can amount to a few percent in experiments at otherwise
usable counting rates with tubes from any manufacturer. Migration of
cesium, other physical changes in the dynode surfaces, charging of

insulators, and more subtle causes have been implicated; and there is

*If the stray photomultiplier anode capacity were 66pF and there were

3 x 10t counts/sec of 1-V charge pulses there, the average phototube anode
current would be about 2 x 10~ A. If a 10%* A bleeder based on l-megohm
resistors were being used with a fixed voltage from photocathode to anode,
the average anode current would increase the voltage across the actual
dynode structure by about 2 V, enough to cause. a >1% increase in the pulse
height over that which would have been observed at very low counting rate.

*#*They recommended low anode currents, 20- to 60-min warmup periods, and
alternate measurements against a standard source of about the same intens-
ity. Their advice for dc measurements still applies now for pulse work
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evidence that phototube manufacturers are starting to eliminate sources

of drift (Rc63, Kobkh, Kr65).

The rapid shifts reported by Bell et al. (BeS5) seem fully reversible,
and by their independence of phototube gain prove themselves to originate
in a stage near the photocathode. The logarithm of the shift rises
roughly linearly with light intensity on the cathode (BeS55, Jub0), and
therefore for a given tube the shift depends largely on the average rate
of light production in the scintillator. The effect takes its full mag-
nitude within a minute, but there is no literature to indicate whether
its relaxation time is 10 sec, 0.l sec, or 1 msec.¥® Covell and Euler
(Cofla) at about 2.5 x 10* counts/sec of '®7Cs report shifts between 0.5
and 10%, with most tested tubes showing less than 1%. Jung et al. (Jub0)
report rapid shifts which ranged between +0.5% for 10* counts/sec from
the same source, much smaller than the shifts observed on the tubes

tested by Bell et al. (Be55).

When the counting rate is increased, fatigue gain drifts appear
to have approximately exponential dependence on time with periods up to
a few hours. The pericd depends on the tube, but all workers report
that the recovery after the source is removed is slower than the onset
for that tube. The recovery period is reported to be lengthened by an
extended time at high output current. As noted by Marshall et al. (Ma%?)
and every author since, the drift seems to occur in the last dynodes of
the tube, where currents are highest, and the dc output current is the
parameter most correlated to the drift. An equilibrium or quasiequilib-
rium gain at a given current is reached after a few hours or a day, but
after half an hour with 100 nA anode current Covell and Euler (Cobla)
report changes between -4% and +10% for various tubes, with a few
EMI 9578B and EMI 9536B tubes performing the best. At the same current
Jung et al. (Jub0) observed total drifts in the range 0.5 to 2%. These
drifts or similar ones were studied by Cathey (0358, Cabl) at currents

up to 1 pA, but he observed drifts so large that spectrometry would

*Workers with accelerators of low duty factor would presumably have
observed alarming shifts and reported them if 1 msec were the relaxa-
tion time.




20

generally be impossible. Cantarell (Cabk) and Cantarell and Almodovar
(cab5) report that for a given tube and temperature the effects are very
reproducible and graphically predictable,* and Jung's results quoted
gbove seem to confirm this. When the fatigue cannot be made small by
use of low counting rates, the phototube gain should be lowered to
reduce the average anode current, though Jung et al. (Jub60) graphically
show that the "returns"” diminish because at low phototube gain more
dynodes play an important role in the fatigue. Cathey (Ccas8, Cabl) has
shown that ambient temperature and perhaps also the relative electrode
voltages near the anode are important in fatigue. Chéry (Ch60) and
Karzmark (Ka65) indicate that aging some tubes at dissipation-limit cur-

rents (1lmA) can improve apparent stability.

" Both types of phototube gain change vanish at low counting rate,
though turning on the high voltage is said to produce an effect similar
to that of using a small source (Jub0, Cabl). The short-term shift
remains constant for a given cathode current, and the fatigue after a
period of hours reaches a steady value which depends on the anode current.
Thus a few-hour walting periocd and maintenance of a constant average
light intensity are essential in controlling both effects. Fatigue is
reduced by lowering the phototube gain, so it appears that for reproduc-
ible work without excessive tube testing the average current should be

restricted to a few nanoamperes .¥¥

Where high anode currents are required to drive coincidence circuitry,
a positive pulse is often derived from a dynode a few stages prior to the

anode in hopes of attaining better stability and linearity for pulse-

#¥Cantarell in fact suggests that an extra-strong source be used to drift
a tube rapidly up to carefully predicted equilibrium gain appropriate to
the smaller source to be used in an experiment. This would not be much

help for a time-dependent source unless an adjustable dc light were used
to hold the anode current constant.

#¥For a typical stray capacity of 50 pF on a phototube anode, and 10*
counts/sec averaging 5 V at the amplifier output, the average anode cur-
rent would be 5 nA for an overall amplifier gain of 500. Amplifiers with
this maximum gain encourage unnecessary acceptance of fatigue effects
unless they are used with a preamplifier.
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height spectrometry.* Chéry (Ch60) has observed fatigue at an earlier
dynode almost as severe as at the anode, and the resolution (Be55, Co60)
under fatigue conditions also suggests that high average anode currents
may sometimes be sensed by the whole phototube. In any case, the short-

term shifts arising near the cathode would be equally evident at any

late dynode.

In summary, experimenters who wish to work with precision as close
as 1% can materially simplify their drift problems by following the pro-
cedures suggested concerning choice of equipment, care with magnetic

field and temperature ambients, and use of constant low phototube currents.

B. Experiment Design to Detect and Avoid Drift

An experiment can be designed to illuminate drifts before much
damage is done, to make the results insensitive to drifts, or perhaps

even to eliminate drifts.

The most usual method for making drifts unimportant is to measure
Simultaneously the pulse-height spectra of the energy standards and the
unknown source. This is possible when a simple line structure is involved
and time dependence is not important. Small drifts in this case cause

only a broadening of pulse-height distributions.

Where this method cannot be used, short-term interchange of un-
knowns with standards sometimes can be used, with perhaps one standard
remaining in each of the two pulse-height distributions. This strategy
has the strong advantage that a standard energy can be chosen arbitrarily
close to an unknown. The interchange method is further discussed near

the end of the next section.

In many experiments no particular tricks are possible, so drift must
be minimized by separating its sources and attacking them one by one.
Drift tracing is aided by recording the phototube supply voltage and the

electronic gain, either continuously or periodically.

*In these cases pulse pickup from larger signals near the ganode causes
difficulty which must be met by critical arrangement and sizing of bypass
condensers.
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For monitoring high voltage the authors have used a 10-mV strip-
chart potentiometer recorder to plot the difference between a standard
cell potential and the 1-V position on a precision bleeder from the
phototube supply voltage. While this makes simple the required 1074
sensitivity, temperature drifts in the test apparatus may mask power
supply changes. This pitfall can be softened by housing the test device
in an insulated box to inhibit heat transfer, but a temperature-compen-
sated reference voltage should be employed. Manually operated potenti-
ometers would be adequate except that in practice one forgets to consult

with them.

For drift checks, standardized test pulses of shapes similar to
those from the scintillator-phototube combination need to be introduced
into the electronic system as close as possible to the phototube. Figure
2 shows a pulser connection which the authors have found useful though
imperfect.® Pulses thus introduced test the entire electronic system,
but for drift tracing one must have standard pulses available for intro-
duction also at the amplifier and pulse-height analyzer input terminals.
The ultimate drift tests performed with radioactive sources at useful
rates may be commenced when pulser tests show that the equipment is
satisfactory. A stable and convenient light pulser would have an impor-
tant application for this type of work as well as for automatic stabili-

zation.

C. Gain Stabilization

Since the early work of Wilkinson (Wi50), von Dardel (Da55), and
de Waard (WaS5), an increasing number of instrument systems are being
designed to provide automatic gain and/or zero stabilization. Such
systems require that an error signal be generated to indicate the dif-

ference between system gain (channels/MeV) and same preset value

*R. Fairstein has noted that the arrangement of Fig. 2 does not allow
minimum noise at the preamplifier input because it defeats the usual
strategy of using a large R,. Where grid resistor thermal noise is
significant this pulser inpﬁt should not be used. In scintillation
spectroscopy such conditions seldom occur.
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Figure 2. Mixer Circuit for Test Pulses and Phototube (Charge)
Output Pulses. By Trimming RpCp, a pulser signal can be
made to resemble that from a NaI(Tl) scintillation counter.
The pulse from the phototube may have objectionable over-

shoot if Cp is not sufficiently small compared with the

stray capacity Cs. R, is chosen to terminate the cable

from the test pulser. As drawn, the circuit suggests that
the phototube is powered by a negative high-voltage supply.
R; and Cg include all impedances to ground from the pre-

amplifier input.
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and that the signal be employed to alter the gain toward a smaller error.
Stabilizer systems can be characterized according to how the system gain
is estimated, how the error signal is generated, and how the galn is

altered.

Valckx (Vabl) was able to use the static DC phototube current to
indicate phototube gain in pulsed accelerator experiments, and Rijks
(Ri6l) used a low-frequency-modulated light source, but most workers have
employed some sort of light pulse seen by the phototube to include most
of the spectrometer system within the gain measurement. A prominent peak
in the unknown spectrum may be utilized (see St64 and Di63 for simple
systems of this type) if there is no time dependence of any sloped back-
ground "beneath" it, but the most flexible systems allow the gain-
measuring pulses to be tagged by their pulse shape (Hi6L4), their coinci-
dent radiations (Dubk), or the trigger for an artificial light pulse
(Ha60, Ke63, Mc65). TIn a sense only the method of Dudley (Dubld) includes
the entire system within the gain measurement because others exclude the
scintillator. Similarly, as Ladd (La6l) and others have noted, the out- ~
put test-pulse height should be measured through the same pulse analyzer
that is used for the spectrum being studied, though the test signals

should not be recorded.

The error signal is usually generated from the output pulses that
occur in two adjacent pulse-height windows which just straddle the test
peak in the pulse-height distribution being stabilized. [One window can
be used if the count rate and window width are stable (St64).T] The dif-
ference or ratio of these count rates can be sensed with an analog rate
meter, or an "up-down" counter can record the cummulative difference
between the numbers of counts within the two windows and from this pro-
duce the error signal with a digital-to-analog converter. Stabilized
system performance with an imposed drift, including statistical counting
problems, has been considered by Wilkinson (WiSO), by de Waard (Wa55),
and Dudley and Scarpatetti (DubL) for analog systems and by Ladd and
Kennedy (labl) for a digital system.

The error signal may be utilized by adding it to the high voltage
on the photomultiplier if the phototube transit time need not be held
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constant for timing purposes. Amplitude-to-time differential pulse
analyzers often permit small changes in conversion gain by application
of the error signal to the constant current supply which generates the
time-measuring ramp. Variable gain amplifier stages have also been

employed (Mab2a, Stb6h, Nab5).

Zero correction may be combined with gain stabilization if a second
smaller pulse signal is injected (Dubl) or if the pulse analyzer is trig-

gered to sample the baseline when there is no signal (Ché2).

The stabilization devices, some of which are available commercially,
have achieved enough sophistication and ease of use to be practical when
large intrinsic drifts are expensive. More work seems required to

simplify the generation of tagged pulses in or near the scintillator.

1IV. GSPECTRCMETER LINEARITY

A. Definition and Specification of Nonlinearity

We continue to assume that for every gamma ray of energy E we can
obtain the mean voltage or channel number P of the full-energy peak in
the corresponding pulse-height distribution N(p). In Sect.Vare discussed
the methods for finding P. A given spectrometer has linear pulse-height
response over the stated energy range if there exist constants a and b
such that P(E) = aE + b, within experimental error, for gamma-ray energies
in some region E. = E < E_.. The response is proportional if b = O,

L U
though the value of b is rather arbitrary since the pulse height regis-

tered for a pulse of zero amplitude is adjustable in most pulse-height
analysis equipment. For this reason linearity of an entire spectrometer
is usually discussed, though reference to proportionality is more

appropriate for the scintillator itself.

Even under the best circumstances, NaI(Tl) gamma-ray scintillators
do not yield light-output response proporticnal within normal experi-
mental error to the energy absorbed. This unavoidable nonproportionality
complicates data analysis and limits precision. Nonlinearities in
electronic instruments may aggravate this unpleasant situation and also

provide a source of drift. To analyze the linearity problem, we will
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examine in Sect.IV.B. the proportionality of each of the elements of the
chain process which links incident gamma rays with output pulse-height

distributions.

For an example of linearity definition, consider the combined elec-
tronic gear which connects the magnitude of the charge q liberated at
the anode of a photomultiplier to the mean pulse height P observed on a
multichannel differential pulse-height analyzer. We assume here that g
does not vary statistically, and if noise is small we can ignore the
width of the statistical distribution of output p for a given q. To
eliminate channel width ambiguity, we further suppose that observations
are made for pulse heights which average on the boundary between adjacent
pulse-height channels. So we may obtain a series of experimental points

(P., a.), and wish to fit them within error to an expression of the form
i? i

P(q) = ag + b + R(q) ,

where a and b are to be chosen to minimize the maximum absolute value of

R(qg) observed in the range of interest. The integral nonlinearity (Int-

non) of the tested equipment is usually defined relative to the full
range of possible pulse heights as Intnon = % Ileax/Pfull scale®

Intnon reflects the degree of difficulty the experimenter has in drawing
a straight-line calibration relating collected charge q to mean pulse

height P.

A complementary quantity is the differential nonlinearity (Difnon).

Let d be a constant chosen to minimize the maximum observed absolute
value of S(q) in the relation dP(g)/dq = & + S(q). Then usually Difnon =
[ 2 Islmax/d' Difnon represents the difficulty encountered by the experi-
menter in determining from a continuous pulse-height spectrum the true

number of pulses per unit range of q.

The quantities Difnon and Intnon are related, since if either is
zero the other must be. This relationship depends upon the rapidity of
the sign fluctuations in S(gq). An analyzer with a + 33% differential
nonlinearity has small integral nonlinearity if alternate channels have

twice the width of the intervening ones. On the other hand, Difnon for
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a + 0.5% Intnon is at least four times as large, or + 2. This occurs
if the lower half of the channels are 2% larger than average and the
second half 2% lower than average. So if one observes an integral non-
linearity of + 0.5% of full scale there is practical assurance that the
corresponding differential nonlinearity is greater than + 2%. The dis-
cussion of differential nonlinearity has been included because of its
great importance, though the concept of integral linearity is more

naturally employed in energy calibration problems.

B. Origins of Nonproportionality

At every step of the energy transfer process between the gamma-ray
source and the pulse analyzer there are opportunities for nonproportion-
ality. Some of these may be controlled. The more prominent opportuni-
ties are described below, working from the equipment output toward its
input. Assume that a single-crystal NaI(Tl) scintillation spectrometer
is to be used, though many of the éffects occur 1n more complex spec-

trometers.

1. Pulse-height analyzers are a significant source of nonlinearity.
The currently most popular multichannel types employ input linear ampli-
fiers and gates, followed by a conversion from pulse-voltage amplitude to
a time interval measured by using a gated oscillator and a scaler to give
the channel number. Manufacturers generally claim integral nonlinearities
of no worse than % 0.5% and differential nonlinearities of no worse than
+ 2%, if the lowest few percent of the pulse-height range is ignored. ‘
Experience shows that the typical untested multichannel pulse-height ana- ‘
lyzer found in the nuclear laboratory must be assumed to be no more linear

than the specifications quoted for it at the time of purchase.

2. Linear amplifiers and preamplifiers in common use seldom have
important nonproportionality when properly employed. Most deviations
are observed near the highest pulses meant to be produced; vacuum-tube
systems especially require occasional maintenance to minimize this effect.
One should note whether gross pulse-shape changes occur near these
highest amplitudes, since pulse analysis equipment is often sensitive to

pulse shape as well as maximum amplitude.
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3. Multiplier phototube proportionality depends at least on
pulses of all important amplitudes sensing the same electric potential
distribution throughout the multiplier. This in turn depends on the
absence of important space charge effects and upon the supply of stable
voltages to all the dynodes. The dynode supply system must be "stiff"
enough to furnish the average current drain without appreciable voltage
change (< 0.05 V anywhere along the divider), but equivalent stability
during a pulse is usually obtained by the use of a series of bypass
condensers linking the last photomultiplier stages to electrical ground.
Space charge effects can occur during large pulses, though this danger
is slight when using NaI(Tl) if phototube gains have been kept small to
reduce drift, unless voltage differences between electrodes near the

anode are subnormal.

4, Bias in light and photoelectron collections result from dif-
ferences in the average efficiency of light collection from various
parts of the scintillator to the photocathode, and from the illumination
of the cathode seldom being so uniform that variations in photoelectron
collection efficiency are completely averaged. These nonuniformities
are generally discussed in the context of the transfer variance (Brss,
Bi58, Mab2). The nonuniformity of efficiency for production of multi-
plied photoelectrons resulting from these combined effects is important
because the considerable absorption of lower energy gamma rays in the
scintillator produces a spatial distribution of light production which
changes as a function of gamma-ray energy. A nonproporticnality is
introduced which has not been isolated from others but which may be
assumed to be present whenever scanning a mounted crystal with a low-
energy source indicates a variation of the mean pulse height with source
position. The latter effect has often been observed on large crystals

and on those whose length is greater than their diameter.

5. Scintillator nonproportionality has been demonstrated for
NaI(T1l) by a number of experimenters: the mean light output from the
interaction of gamma rays with a NaI(Tl) crystal is not proportional
to the energy lost in the scintillator (En56, Peb0, Kabl, Ka62, Ir62,
He65). Zerby, Meyer, and Murray (Ze6l) and Iredale (Ir52) have
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identified the experimental results with an underlying energy variation
of the light production efficiency of electrons, compounded with the
manyfold electron-photon cascade in the scintillator. This view is
consistent with the existing electron data (Sh6k) and with the under-
standing of the scintillation efficiency vs specific energy loss yilelded
by Murray and Meyer (Mu6l). Commonly in studies of scintillator propor-
tionality one plots the specific light production per unit energy against
energy,¥ though from such a plot numerical values of integral and differ-
ential nonlinearities cannot be directly obtained. The data of Kaiser
(ke62) imply integral nonlinearities of > 1% over the range 15-300 keV,

< 0.2% over the range 0.08-1.3 MeV,** and about 0.5% in the range

10-80 keV.

Scintillator nonlinearity is the most important of the difficulties
thus far discussed. Since analysis must be based on the underlying
response Of the scintillator to electrons, the dependence upon crystal
size has not been expressed simply. Furthermore, special spectrometer
types such as pair spectrometers do not involve the same series of
secondary electron interactions in the crystal as does a single-crystal
spectrometer at the same energy, so proportionality of such spectrometers

might be observably different.

6. Compton scattering and bremsstrahlung or electron escape
involve +the nonunique relation between the source gamma-ray energy and
the energy loss distribution in a crystal. Compton scattering at a small
angle in a thick source or from a collimator between the source and
detector can cause the average energy of the photons entering the crystal
to be lower than the unscattered photon energy. The fractional effect on
the apparent peak position changes with photon energy, so a nonpropor-

tionality occurs. The magnitude of this effect is not known to have

FUnfortunately some of the authors cited suggest nonconstancy of L/E as
evidence sgainst scintillator "linearity," while according to our more
standard definition it demonstrates nonproportionality. Any straight
line on a plot of L vs E produces nonconstant L/E unless the line passes
through the origin.

#*¥Qver this range the NaI(T1l) nonproportionality also appears as a false
intercept, zero pulse height seeminly corresponding to about -20 keV.
This is a common practical observation (see also En56).
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been discussed in the literature, but can be estimated. Suppose that a
monoenergetic source of 1-MeV gamma rays is surrounded by a Compton-
scattering sheath just 1 mean free path thick, so that 63% of the origi-
nal gamma rays scatter. In this single-scattering approximation one can
estimate that a spectrometer with 5% resolution at this energy would

have its apparent peak position shifted by about 1.5 keV if no correction
were made for the continuum, depending somewhat on the metheod used to

obtain the peak position.

Similarly, bremsstrahlung or electrons escaping from a scintillator
can shift the apparent full-energy peak to a value slightly below that
anticipated. The bremsstrahlung effect can be roughly estimated to be
about 1 keV for 3-MeV gamma rays on a 2-cm-diam crystal with 4% resolu-
tion, but the effect would be larger for smaller crystals or higher

energies .* Electron escape is more difficult to estimate.

These effects do not destroy the efficacy of calibrations in the
energy neighborhood of the unknown if the geometry is unchanged, but
can affect the proportionality of source energy to mean "photopeak"

pulse height in a subtle manner.

C. Linearity Test Methods

1. Pulser Tests. -- Integral linearity may be checked using radio-
active sources, but precise results are sufficiently difficult by this
method that electronic equipment should first be tested using a precision
test pulser. The confusion caused by scintillator nonproportionalities
can be avoided in this manner until the electronic equipment has been
proved usable. The following precautions must be taken in the use of

precision test pulsers¥**(see also Crouch and Heath, Cr63):

¥Estimated from Zerby and Moran's (Ze59) bremsstrahlung calculations
for 3-MeV electrons, together with escape probabilities from Case,
de Hoffmann, and Placzek (Ca53).

*#Mercury-switch pulsers are popular for this service. The design must
include a time-constant for charging the switched capacitor such that
the desired potential actually appears at the capacitor terminals when
the switch is activated.
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a. Pulses should enter the system between the phototube base and
the first circuit element capable of nonproportional behavior, preferably
without the detector being disconnected during test measurements. The
test pulse should have rise and decay times which match the pulses from

the phototube.

b. A sufficiently high-quality attenuator or voltage control (or

readout) must be employed.

c. If the pulser has active elements between its output and the
point of precision pulse generation, these circult elements must be
proportional beyond question. Such intermediate circuits are sometimes

employed to provide flexibility of output pulse shape.

d. The custom of using line-frequency repetition rates should be
discouraged, since line-freguency pickup can displace the pulse height
"zero" of pulse-height analysis systems. Introduction of a spread in

pulse heights from this noise would be preferable.

e. If the distribution of pulse amplitudes is narrower than one
channel, some plan must be followed to allow determination of the frac-
tilonal-channel value corresponding to the average pulse height. Some
workers introduce noise on the signal to produce a distribution wide
enough to be easily plotted, but the authors prefer to observe a
dynamic channel-address indicator while adjusting the pulse amplitude
until the storage rate is shared about equally between adjacent channels.
In this manner no error larger than 0.2 channel will likely be made.

Crouch and Heath (Cr63) describe a more precise extension of this approach.

f. At least 15 points should be taken for a careful check, per-
haps with a concentration at low pulse heights where nonlinearities
often appear. The pulse amplitudes should not be chosen in a monotonic

sequence,

Differentigl linearity is of most interest when spectral intensities
(counts per MeV or per volt) must be determined in a continuous spectrum,

but a good test of differential linearity may be integrated to produce a
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precise test of integral linearity (electronics only*).

Differential linearity tests may be performed by differencing very
precise integral data or by using a pulser which yields pulses shaped
properly and distributed uniformly over the pulse-height range employed.
At a low (60, perhaps up to 250, counts/sec) repetition rate this may
be done by applying a linear voltage ramp from a low impedance source
to a mercury switch pulser. A special circuit may be constructed (Wo65)
or a slow (50- to 100-sec) sweep from a standard laboratory oscilloscope
may be used. The linearity of the voltage ramp may be tested using a
differentiating circuit designed to produce a small (~10-mV) voltage
output appropriate to drive a potentiometer-type chart recorder. Except
for the very first part of the sweep before the response time of the
recorder is exhausted, the recorder should indicate a constant voltage
during each sweep. With such a system many hours are required to obtain
an adequate number of counts. Unfortunately, most pulsers having higher
repetition rates do not have the simple properties of the mercury switch;
alternate designs require considerable pains be taken to assure the

equal distribution of output pulses.

An alternative approach produces a Tlat spectrum of pulses by the
use of a perfect time-to-pulse-height converter coupled with a random
time-interval generator such as a radioactive source (Dr59). This is a
splendid concept, but it is hard to obtain a time-to-amplitude converter

with independently testable or completely relisble linearity.

2. Integral Linearity Tested with Gamma-Rays of Known Energy. --
When the electronic equipment is working well enocugh, the energy cali-

bration of the system may be studied using gamma rays. Precautions must

*It is often suggested that the rather flat spectrum of pulse amplitudes
observed in the Compton tail region with a source such as ®o¢o might be
used to study differential linearity. Since the expected spectrum shape
is imperfectly known, the pulse spectrum must be studied at different
electronic gains. This method would be quite valuable if it covered the
whole range of pulse heights needed to be tested and if there were no
ambiguity in the "zero" of the pulse analysis system. Such a test is
excellent for detecting an "odd-even" nonlinearity in which alternate
channels are wider than the intervening ones.
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be taken to avoid drift and nonlinearity, so such an exercise is uneco-
nomical except for the calibration of the energy scale for some experi-
ment. Here we review the steps to be taken to minimize effects of drift

and expose the needed information concerning the energy scale.*

a. Pulse-height spectra from a series of gamma rays of known energy
must be studied, with one calibration point as close as possible to the
energy of any discreté unknown peak. If a broad spectrum is to be
studied, calibration sources must be scattered over its entire energy

range.

b. Popularly the pulse spectra from unknowns and energy standards
are measured simultaneously to avoid drift effects, as described in Sect.
3. They must also be obtained separately or with one source at a time
removed so that proper subtraction of the residual spectrum "underneath"
a given peak may be performed. This method frequently prevents use of
the nearest possible calibration, and cannot be used for continuous

spectra.

When the spectrum being studied is complex or widely distributed,
the source-interchange method is required. The intensities of the two
sets of gamma sources should be arranged so as to keep the average
phototube anode current constant® and rather low (1 x 10°° amp). Source
sets must be interchanged more than once to expose drift, and results
are most conclusive if one gamma ray can be retained as a member of

each set.

c. Calibration sources should be placed in geometry similar to
that of the unknown source so that any geometry-sensitive nonproportion-

alities will occur in the calibration.

The above precautions may be relaxed whenever maximum precision is

not required.

*The corresponding data analysis problem is taken up in sect. V.B.

**Note that on pulse-height analyzers which convert pulse amplitudes to
time intervals the ratio of "live time" to clock time is a convenient
measure of the average anode current, if the effect of the fixed storage
time is compensated for.
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D. Data Reduction to Compensate for Nonlinearilties

The above discussion shows that nonlinearities should be observed
in a careful gamma-ray experiment unless the energy range is small or
the sources of nonlinearity somehow compensate each other. To avoid
serious 1ill effects in the results, one of three overlapping approaches

may be used:

1. The energy vs pulse-height calibration may be restricted to
so small an energy range that local or tangential linearity may be
assumed. This simple method is highly esteemed where it is applicable
(see Peb0a).

2. The calibration data may be fit with some appropriate or
guessed functional form. Calibration data typically can be more nearly
fit to a P vs E relation which includes one or more nonlinear terms
(Jub2, Heb5). The form of the nonlinear term is usually arbitrary,
leading to some conceptual difficulty because the statistical analysis
of fitting procedures assumes that the chosen functional form is capable

of precisely fitting the expectation values of Pi'

3. A priori information can be used to remove nonlinearities from
the data prior to establishment of an energy scale.® One hopes here that

that the uncompensated nonlinearities may become insignificant, or at
least that method 1 above may be applied over an enlarged energy range

or that the amplitudes of nonlinear terms 2 may be diminished.

Methods 1 and 2 are discussed in Sect. V.B. Here we discuss method
3, preferred by us when method 1 is inadequate. Analysis of the elec-
tronic nonlinearities is stressed, but information from the references

on scintillator nonproportionality should be superposed.

The purpose of this approach is to obtain for each pulse height p
a transformed pulse height p (p) = p + A(p) such that on the new p’

*Rquivalently, the nonlinear term can be specified in detail on the
basis of a priori information.
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scale photopeak positions can be expressed as a linear function of gamma-
ray energy over the desired range of E. In practice one needs the equi-
valent of a plot of A(p) vs p to perform this transformation on both
unknown and calibration spectra. Such a linearization technique is
practical in the case of electronic nonlinearities, provided these non-
linearities are sufficilently stable to allow the use of pulser calibra-
tion data.® If very good integral pulser data are available, one can
draw (implicitly or actually) an arbitrary straight line among the points,
plot the deviations from this straight line as a function of pulse height,

and interpolate between them to evaluate A(p).

If good differential linearity data are available, a more precise
correction can be made. Let n be the observed count in channel k, n
being the average over the whole spectrum. We assume for convenience
that the analyzer counts properly even in the lowest channels.¥*¥ The
purpose is to transform the pulse-height coordinate to p”(p) in such a
way that in the new system a unit channel would collect n counts. Then
a linear relationship p” = av + b will hold in the transformed system,
where v is the pulse amplitude at the input to the electronic system.
Differential linearity data yield information on the transformation for
half-integral values of pulse height p = k¥ + 1/2, using the definition
that the integral channel number is assigned as the value of the pulse
height in the center of each channel:

k
p’(k +1/2) = 1/2 +Z nm/ﬁ . (1)

m=1

Values for p # k + 1/2 must be interpolated. The wvariance or mean-square

error in p~ can be derived for the case of a random-amplitude pulser:

v Ip"(k +1/2)] =5, (¥ -5.)/0(a)* W] , (2)

*The authors have experienced most of their difficulty in matchlng well
enough the shapes of the test and NaI(T1l) pulses.

it

Attention may be concentrated on any desired range of channels by a
slight extension of the method given.
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where N is the total number of counts stored in the analyzer and

k
S, = E: n .
k m=1 m

With reasonable sliding pulser data Eq. (2) gives a great overestimate
of the variance because statistical errors arise only in the sorting of
counts between channels. Thus the uncertainty in p (k + 1/2) is some-

thing like o(nk)/ﬁ, where o(gk) S‘/hk’ depending on the amount of noise.

With either of the methods of linearization described above, it
is important to keep track of the spectral intensities when the unknown
spectrum is continuous. To determine the number of counts per MeV, a
smooth approximation must be made to the A(p) vs p curve. Purely statis-
tical fluctuations must not be allowed unless they are relatively smaller

than those in the spectrum of the "unknown."

E. The Importance of Linearity Corrections

The magnitude of errors if nonlinearities are ignored can be esti-
mated by assuming that the pulse-height analyzer and NaI{T1l) nonlineari-
ties are dominant. If one straight line 1s chosen to represent Pi Vs E.l
for the whole energy range from 0.05 to 2 MeV, errors up to 10 keV must
be expected. So large a systematic error would be most seriocus if
limiting precision near 0.2% of an unknown energy were desired. However,
if the calibration is confined to a quarter of the pulse-height range,

a local linear approximation is apt to approach the required integral

precision.

V. ENERGY ANALYSIS OF PULSE-HEIGHT SPECTRA

We suppose that pulse-height distributions Ni(p) are available from
each of a series of gamma-ray emitters of energy Ei’ and we wish to
derive from these distributions an unknown energy E for which a pulse-
height distribution is also available. Energy calibration for a con-
tinuous unknown spectrum is an extension of this problem. Only the full-
energy peaks are to be considered in the analysis, though information

can sometimes be derived from other features of the distributions.
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The subsections below indicate the steps required to obtain a single
pulse height Pi to represent the pulse-height distribution from each
gamma-ray energy and to interpret the resulting data couplets (Pi,Ei)
to yield the gamma-ray energy and uncertainty corresponding to a full-

energy peak centered at any pulse height P.

A. Choice of the Pulse Height P, to Represent Ni(p)

1. Isolation of the Pulse-Height Spectra from Individual Gamma
Rays. -- The distribution from the gamma ray of energy Ei will generally
be accompanied by some laboratory background and by interfering counts
from other gamma sources simultaneously exposed to the scintillator.

Such backgrounds should be subtracted prior to analysis for calibration.

While pulse-height analyzers frequently allow background to be subtracted
without use of an external data storage medium, such internal subtraction
should be avoided unless one of the parent distributions is also recorded

to allow analysis of statistical uncertainties.

When a single nuclide emits more than one gamma ray, isolating all
the pulse-height distributions generated by individual source energies
is difficult unless coincidence methods can be used. The effects of
one gamma ray on the peak distributions of the others must in this case
be removed, using interpolated information on the spectrometer response.
Fortunately, only the region within two or three standard deviations of

each full-energy peak is needed for analysis.¥*

2. Determination of the Peak Position Pi from the Corrected
Ni(p). -- We now consider an isolated pulse-height distribution for a
gamma ray of energy B.. Given this discrete distribution Ni(p), which
frequently approximates values taken from a normal distribution G(p),
we wish to choose Pi' One can estimate the average pulse height, the
mode of the distribution, or some other convenient measure. In any
case, the purpose 1s to choose a reproducible scheme for a given experi-

ment which can be used with all the full-energy distributions to be

*Some of the peak analysis methods described in this section will yleld
a result even if this peak isolation procedure is not followed, because
a constant background has been implicitly assumed.
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intercompared. There is no need to determine Pi more precisely than the
experiment warrants, so drifts and other calibration difficulties should
be roughly evaluated before any complicated method for finding the Pi's
is initiated.

When only the peak position is desired, the effects of finite

pulse-height channel width can nearly always be ignored.*

Throughout, a pulse height is indexed at its center, i1.e., pulse

height p is in channel k if k¥ - 0.5 < p < k + 0.5.%%

a. Graphical methods. -- The optimum choice among the possible
graphical methods may depend on whether other parameters of the full-
energy peak are needed. Each of the three methods below yields infor-
mation on the breadth of the pulse-height distribution, but this poten-
tial output is not discussed. Any one of the methods could also provide

the basis for a digital computer program which could include an objective

error estimate.

The simplest method is to plot the data and some of the statistical
errors on linear paper as in Fig. 3a, using at least 1/8 in. per channel.
The points along the sides of the peak seem to fall on straight lines,
since, if the frequency function is normal, there are points of inflec-
tion at P £ 0. ILet the frequency function of counts per pulse-height
interval be denoted by

6() = {exs] -0 - P)/2? [}fo /27 . (3)

If we expand G(p) around p = P + ¢ using the variable (p -P - 0)/0 = X,

one obtains for small x

Gx)=¢ +0) [L-x(1-/3)+...]7 , (%)

¥If a normal distribution of unit standard deviation is integrated over
channels of width & centered at an abscissa p from the mean, the observed
count may be approximated by the following expansion:
c(p) = (8//2x) exp(-p?/2) [1 + (8°/2h)(p® - 1) +

+ (8% /1920)(3 - 6p°® + P*) + ... ]

#%*Qther definitions are common; so, reader, be wary.
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Figure 3. An Illustration of
Graphical Methods for Determining a
Photo-Peak Position, Using an Experi-
mental Spectrogram of the 0.9-MeV
Gamma Ray in the Decay of ®%y. (a) A
plot of the differential spectrum,
with straight lines fitted to the
sides of the peak in the neighborhood
of the inflection point. The value
of P is estimated to fall midway
between the fitted lines at 61% of
the maximum intensity. (b) A plot
of the normalized integral spectrum
on linear probability paper. P is
estimated as the intercept of the
line fitted to the data points with
the 50% ordinate, corresponding to
an apparent bisection of area. (c)

A semilogrithmic plot of ratios of
observed intensities in successive
channels, from which P is chosen as
the intercept with unit ratio. The
dashed line has the shape predicted
for a Poisson distribution having
the same relative resolution as the
data.

The errors shown on all estimates
of P are qualitative, based on the
uncertainties experienced in drawing
the curves. Only for case ¢ was a
small approximate background sub-
tracted (18 counts/chammel).
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where the next term contains x*. Thus the idea of straight-line relation-
ships along the sides of the peaks is justified within ~3% in the region
|x1 < 1/2, where G(p) is between 33 and 88% of its maximum value. If
this method is used, it is most reasonable to take as the estimator of
P the midpoint between the straight lines at the ordinate given by
¢(p)/c(P) = 0.61. At this ordinate the distance between the lines is
about 20. If there are at least two data points in the regions where
the straightline approximations are valid and if the slopes of the lines
on either side are nearly equal in magnitude, the method is a very good ]
one for hand calculation. The result for P is not influenced by a con-
stant background, and even when the observed pulse-height distributions ‘

are asymmetric, this method seems quite reproducible.

A second graphical method (Bo60, Zi6l)memploys linear probability
paper, on which the error integral I(e) = Ie G(p) dp appears as a
straight line when plotted against e, where G(p) is the normal distri-
bution of Eq. (3). The method assumes that the background-free data are
sampled from a normal distribution and that the area of the experimental
peak can be determined for normalization. To plot the example shown in
Fig. 3b, the area of the experimental distribution was estimated by
summing the counts in the peak, though such a sum always involves guess-
work in the wvalley between the full-energy peak and the Compton edge.
The partial sum down through the kth channel, to be plotted at p = k - 1/2,
is Jjust

Ik - 1/2) =) n_ , (5)

= |~

where K is chosen as an arbitrary upper cutoff for counts presumed to

be associated with the gamma-ray peak in question, and A is the estimated
area of the whole distribution. P is taken as the fractional channel
number at the intercept of the plotted line with I = 1/2. This method
has the advantage of combining the observed data in all the channels in

a simple integral manner, but the advantage is coupled with a difficulty
in determining A whenever the valley to the low pulse-height side of

N(p) is poorly determined. A relative error AA/A in the estimated area
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should produce a peak-position error AP = 1.25¢AA/A, so a 2% error in
area typically can be tolerated. In drawing the curve one must remember
that the statistical uncertainties in the plotted points are very highly

correlated.

The third scheme, proposed by Zimmerman (Zi6l), requires a semilog
plot of the ratios of the contents of successive channels. If the pulse-
height distribution were normal, the line which approximates the plotted
ratios should intercept unity for p = P. To see this, define R(p) =
%%%—%—%%%%. Assume first that N(p) = G(p) near its mean. Then in the

normal approximation

or (6)

This straight line crosses R = 1 when p = P. Such a line may be drawn
from the known values of the ratio at each channel edge; i.e., the con-
tents n of channel k and nk+l of channel k + 1 may be combined to

estimate ratios at half-integral channels as follows:

R(k + 0.5) = nk+l/nk

This formula assumes that the channel contents approximate ordinates of
the normal distribution, making the zero—ordér small channel-width
approximation given in the footnote at the beginning of Sect. A.2. An
error estimate for the resulting value of ? could be made by propagating
the counting errors through 1n R and then through a least-squares anal-
ysis for the best intercept of the line [Eq. (6)]. In estimating errors
by simple methods, one should use a given o in only a single ratio
instead of the possible two in order that the plotted points considered
be independent. Otherwise, the strong correlations should be taken

into account in drawing or computing the line. The method is illustrated

in Fig. 3c¢. Note that channel contents ratios taken far from the peak
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do not fall near the line because the shape of the pulse-height distri-
bution is not nearly normal, and that the value of P estimated for this
case will depend markedly on just which channel ratios are employed in
drawing the curve. Figure 3c also illustrates that a Poisson pulse-

height distribution with about the correct position and breadth would

yield count ratios falling on a curved line, so that an estimate of P

based on a straight line is generally slightly biased.

b. Use of the mean pulse height. -- The mean pulse height of a
peak would be expected to be an efficient method of obtaining P from

. This value is given simply b
"k Y
K

K
P-) knk/z ne (7)
k=Kl k=Kl

where the cutoffs Ku and K, must in practice be chosen to minimize any

bias in P caused by unsubtiacted backgrounds or the continuum below the
full-energy peak. The evident arbitrariness in the selection of these
sum limits seems to have reduced the use of this method, but the diffi-
culty is not really so great unless the channels are very wide. One

may estimate the maximum bias by observing the effect on the P from

Eq. (7) of adding (or substracting) one and two channels from the region
included between Ku and Kl' It is assumed that this region will be
chosen as symmetrically as possible around the approximate peak position,
and the final effect of any bias can be reduced by reaching similar
range-of -summation decisions on all the full-energy peaks studied. From
the data of Fig. 3 estimates of P based on Eq. (7) are shown in Table 4
using data from the indicated channel intervals. In this approach we
have not used an approximate analytic shape for the pulse-height distri-

bution, as required in the development of many methods.

Standard errors for the P of Eq. (7) may be estimated by taking
the square root of the variance estimate

K
u

V() =35 ) (P-%Pan_, (8)

k=Kl
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Table 4. A Comparison of Numerical Methods for Estimation of
Peak Position, Using the Same Data Illustrated in Fig. 3.
The typical stability of the solution as a function of the
channels included is demonstrated. Ranges above and below
the dotted lines would not normally be tried, on one side
containing less than 85% of the data and on the other
including regions of obvious asymmetry.

Nonlinear Fits
1 Parameter,
1 TIteration,

Channel Mean Pulse Height, 3 Parameters, c=2.5 channels,
Range Egs. (7) and (8) Normal Distribution A=3.00 x 10*
57 - 60 58.52 + 0.04 58.52 + 0.0k4
57 - 61 58.53 £ 0.035 58.49 + 0.03
56 - 61 58.51 + (0.010)? 58.53 + 0.03
56 - 62 58.76 58.53 + 0.022 58.50 + 0.02
55 - 62 58.53 + (0.012)2 58.54 + 0.018 58.55 + 0.019
55 - 63 58.63 58.56 + 0.017 58.54 + 0.018
5h - 63 58.53 + (0.013)% 58.54 + 0.016 58.54 + 0.016
5L - 6k 58.63 58.56 + 0.016 58.46 £ 0.016
53 - 64 58.53 + 0.01k 58.54 £ 0.016 58.54 £ 0.015
53 - 65 58.59 58.55 + 0.015 58.55 + 0.015
52 -~ 65 58.51 + 0.01lL 58.53 + 0.015 58.53 £ 0.015
52 - 66 58.55 58.54 + 0.015 58.54 + 0.015
51 - 66 58.48 + 0.015 58.53 + 0.015
51 - 67 58.49 58.52 + 0.015 58.53 + 0.015
a

See text for explanation of these estimates.
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where

Ku
A=2 n -
k=Kl

Errors thus calculated are listed with some of the values given in Table
L. The largest contributions to the sum of Eq. (8) come from channels

55 and 62 at about one-third of the peak intensity. (For a normal pulse-
height distribution it would be at about 37% of the maximum value.) Note
that the statistical uncertainty in this estimate of P is small, illus-
trating both the statistical efficiency of the method and the relatively
large importance of the bilas uncertainty discussed above. The uncer-
tainty estimates in parenthesis are implausibly small, since using a
smaller share of the available data should not reduce the uncertainty.
The estimate given by Eq. (8) unrealistically assumes that there are no

pulses outside the channel region K, < k < Ku'

1
C. A least-squares curve-fitting method. -- This section describes
a technique of nonlinear least-squares fitting (Ch63, Bu62) which normally
requires the use of a fast digital computer, though it is slightly
adaptable for hand analyzis. DPutnam et al. (Pu65) give a similar method,
and Julke et al. (Jub2) describe the application to this problem of a
slightly different general least-squares scheme similar to that described

by Deming (Dell).

We wish to approximate n, in the region of the full-energy peak by
a function of pulse height which contains a set of parameters bc' One
of these parameters will represent the desired peak position P. ILet I
be the total number of data points to be fit and ¥ the total number of

parameters required. The basic approximation may be written

n, = = f(k; b, ... bZ) = f(k; b) , (9)

Y3

where b represents the vector of ¥ parameters bo' Equation (9)% involves

FEquation {9) can of course be generalized so that the independent
variable need not be the channel number.
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the scatter of experimental points about the fitted line and the suit-
ability of the function f, which may, for instance, be designed to
include the effect of finite channel widths in fitting the data near
the full-energy peak. Unless the function f is linear in parameters bo’
most unusual in this application, iteration must be performed on a
second approximation, which linearizes the dependence on the parameters

for small differences therein:

3

a db

£k b) =1k, 1°) +) B
of
ag

[f(k, p°)] + ... . (10)

Equation (10) represents the constant and linear terms in the Taylor

series expansion of f in small B =b - b°.

The procedure involves a solution for the parameter differences B
by the method of weighted least squares. Reasonable estimates, E?, must
be available to begin, and iteration is continued by choosing the P?
for the (M + 1)th iteration as the b = b° + 8 from the Mth iteration.
Iteration is usually made to stop when the sum S over all the data points

of weighted squared residuals no longer becomes smaller:

s =) w [ - £(ks B, (11)
k

where

W = (variance of 1’1k)_1 = [V(nk)]_l

If no appreciable background has been subtracted, one normally takes

V(nk) = n , or sometimes V(nk) = f(k, b°). The second ought, in principle,
to be preferred once the estimates Pé are reasonably correct, but in the
typical case in which the tails of the function £ do not fit the data
well, V(nk) =n is more successful.

Derivation of formulas to solve for the Bo in each iteration pro-
ceeds just as for the parameters themselves in linear least-squares

theory. We define the matrix F with elements




o) 0
o = 5 [£(x, 2°)] (12)

where the notation implies that the derivatives are to be evaluated at

b=

The least-squares matrix g has elements defined as

Qcp = E:kachwk ? (13)
k

provided only that important statistical correlations have not been
introduced among the data counts. Then if Q has an inverse, the solu-

tion is written in matrix notation as
B=Q'r , (1)

where r is the vector with elements

r =) W [ - £k, ). (15)
k

The summations in Egqs. (13) and (15) are over all the data points included
for analysis. Assuming f can fit the data within error one can estimate
the variance matrix of the b vector based in the usual way on the input

weights WR, as
V(b) = expectation value (8b QET) =q*t . (16)

The outlined procedure is quite convenient once it is programmed

because:

1. The form of f(k; b) is open to a wide range of possibilities.
Nonnormal distribution can be utilized, and low-energy tails and even

backgrounds can readily be included into the parameterization. (Ch63).

2. One can assure that all the peaks under consideration are

fit to the same shape.
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3. Other features of the distribution, such as width and area,

are estimated along with the peak position P.

b, The goodness of fit of the data to the chosen peak shape can
be tested against the chi-square distribution by examining the minimum

value of S attained.

5. The output error estimates for the parameters are an objective

propagation of the input statistical errors.

6. Interfering pulse-height distributions sometimes can be fit

along with the main peak by using a larger number of parameters.

The relative disadvantages of the curve-fitting method include the
time that 1s sometimes required to obtain a suitable machine program,
the difficulty in finding an economical parameterization cépable of
fitting good data in detail, and the likelihood that systematic errors
in shape will govern output uncertainties more than the propagated input
errors even if drifts are small. If the empirical shapes cannot be fit
precisely in the tails of the full-energy peak, the obtained estimate
of P will depend on how many experimental points are employed in the

analysis.

A machine program employing the method described above was used to
approximate the data of Fig. 3 by a normal density function, which
requires parameters for the area A, the standard deviation o, and the
peak position P. The results for P are listed in the second column of
Table L4.* Note that the estimate of P is fairly stable as different
reasonable choices of channels are made and that the uncertainty estimate
varies sensibly with the amount of data used. However, the data are not
normally distributed, and values of S from Eq. (11) vbecame unduly large
(greater than four times the number of degrees of freedom) when more
than the ten central data channels were employed. Good fits were
obtained with essentially the same value of P when a fourth parameter

representing a constant "background" was included.

*For the channel range 54-63, the other parameters were A = (2.95 + 0.02)
x 1¢* counts and ¢ = (2.43 + 0.02) channels.
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After one of the graphical methods has been employed, a highly
simplified least-squares check can be made by hand to obtain a small
refinement in P. Suppose again that the normal distribution, Eq. (3),
is to be used with an area A estimated by summing the counts in the
peak. A reasonably good value of the standard deviation ¢ is required
from the graphical analysis. One takes as Po the value supplied by a
graphical method and performs the least-squares fit in only one param-

eter, the peak position. In the above notation we have
fk; PO) = A exp[-(X - Po)2/2 /e /2x

and

3f(k; P )

W I et 5]

w o - £(k; P )] £(k; 2) (x - P )/ (18)

where f(k; PO) is the estimated count in channel k if P_ were the peak

position. The Q matrix becomes a scalar,

er 2w

af(k P )

2P =) (k- P Pk, P ) (19)

as does the parameter refinement P, - PO = r/qQ from Eq. (14). The stand-
ard error in P is just Q 2. When the subtracted background is not large,

one may take W, = l/nk.

The third column of Table 4 contains the results for Pl after one
single-parameter iteration as described above. Estimates o = 2.5 channels,
Po = 58.5 channels, and A = 3.00 X 10* counts were used; values of f were
- computed by hand with the aid of tables of the normal frequency function.
Observe that the resulting values and errors are quite close to those
from the three-parameter converged iterative fit, possibly because the

original estimates were rather close. The estimated standard errors are
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the same because in the full procedure the correlations between the
computed parameters are very small -- 1.e., the 3 X 3 least-squares
matrix Q has diagonal elements whose inverses are nearly the elements
of the inverse matrix. (This is not generally true in fitting more
complex functions). It is really not necessary to compute the standard
error for each case, since if essentially all the peak is utilized and
if the data fit even in the tails, the summation for Q can be‘readily
approximated by an integral to yield /6;3 = /857K‘= 1.44 x 107® channel

in the above example.

d. A comparison of methods for finding P. -- Unless the worker
must carefully fit the shapes of all his pulse-height distributions, for
which a nonlinear fitting code might be useful (see Ch63), the authors
recommend the use of the simple linear plot or its automation on any
available digital computer. The most important reason beyond simplicity
for this choice is that spectrometer responses of imperfect symmetry are

handled quite naturally.

It is interesting to compare in Fig. 3 and Table 4 the graphic and
numeric estimates of P, since the former were determined first to avoid
bias. All the results are consistent within their own errors except
possibly the mean-pulse-height estimate, with which one must include an
uncertainty based on confusion as to which data channels ought to be
included. Qualitative error estimates from the graphical methods are
larger than those computed in the numeric mesthods, but may better take
into account difficulties based on the shapes of the distributions which
later may give nonlinear effects as a function of energy. The least-
squares solutions for P seem stable as the channel range is varied, and
the single iteration one-parameter refinement by hand gave the same
results as the full machine procedure, starting from good estimates based
on any of the graphical methods. There is considerable experience to
support the agbove conclusions in typical cases other than the data of

Fig. 3 (Cofl).

B. Establishing the Energy vs Pulse-Height Relationship

Once peak positions and uncertainties (Pi + pi) have been determined
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for all important full-energy peaks in the e¢xperimental spectra, an
energy sScale for pulse height may be established if drifts have been
compensated for or shown to be small by the methods described in Sect.
IV.C.2. Drift corrections are hazardous 1f larger than the quoted
uncertainties in the peak positions, so one must often seek a more con-

sistent set of data.

Interpolation methods of two types will be discussed. The first
employs only two calibration points and assumes local or tangential
linearity, perhaps after a linearization technique has already been
employed. The second uses 1n a weighted least squares procedure all the
data available over the energy region of interest, and may employ terms

nonlinear in the energy.

1. The Two-Point Interpolation Method. -- Suppose that E + ¢ are
the unknown energy and standard error for a peak at position P + p and
suppose that calibration at energies El x € and E2 *+ €5 yielded peaks
at Pl + Py and P2 + Py It is assumed that the pulse-height vs energy
relation is linear over this region or that it has been adequately

linearized. ILet

£, = (P - Pl)/(P2 - Pl) and £, =1-f, . (20)
Then
E=fgE +fE, , (21)
and
2 _ 2 2 2 2 2 2 2 2
e = f7 ] + fi € +8 (p® + fz Py + 13 p2) (22)

if the conversion gain g = (E2 - El)/(PE - Pl>' The expression for &°
assumes that all the errors are uncorrelated, so any estimated systematic

component of the p's should be combined more carefully.

These relations may be used for short-range extrapolations outside

the interval (Pl, PE)’ though estimated errors become larger because
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one of the f's will have magnitude greater than unity. The two-point
calibration method throws away any available information from distant
calibration points, but in return is not concerned about the form of the
nonlinearities which most likely exist over the more extended pulsew=
height range. Since fewer output parameters are required, the reduced
amount of utilized input data is of less concern than might be thought.
When only two calibration points are so used there is no redundant

information to illuminate mistakes; therefore extra care 1s required.

2. A Weighted Least-Squares Interpolation Method. -- It is assumed
below that a set of a few parameters is desired to represent the I data
couplets (Ei’ Pi). The resulting interpolation formula is expected to
resemble a straight line and to be linear in the parameters bc' From the
discussion of peak-fitting procedures above it follows that the latter
condition may be removed gt the price of an iterative procedure to

obtain the solution.

We assume that no output information is desired concerning the most
consistent wvalues of the Ei’ as would be availlable from the least-squares
calibration method described by Julke et al. (Ju62). If it should be
necessary to use as calibration standards any gamma rays having energy
values whose relative uncertainty ej/Ej is comparable to the relative
pulse~height uncertainty pj/Pj’ we plan to reduce accordingly the weight

of the ith observation.

We seek a relation to approximate Pi Vs Ei of the form

P, =Zbo Fio (23)
g

for all i. Here the bO are the desired parameters and Fio are the
values of some functions fo(E) at E = Ei' For example, if a simple

guadratic expression is sought,

Pi = bl + b2Ei + b3E§ 5 (2&)

F.. =1 and F.
i

il = Ei for each data point.

2
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It is proposed to find the values of the bc by minimizing S, the
weighted sum of squared residuals between the experimental data and the

interpolated values:

S=§%%-ZW5V=@@@%@—@>- (25)

(o}

The summation form for S as given above assumes that the Pi’s are
uncorrelated, while the vector notation is more general but reduces to
the summation form in the case of no correlation. In the vector notation,
which is used below for compactness, P and b are column vectors, T sig-
nifies the transpose, F 1s a I X ¥ matrix, where ¥ is the number of
parameters, and W is an I X I matrix which must be diagonal to reproduce

the summation form in Eq. (25).

The well-known solution is*

b=t ¥R, (26)

with a parameter variance matrix, based on input errors, of X(b) = g:l,
where the least-squares matrix @ = ET WF 1is assumed to have an inverse.

Practical use of Eq. (25) depends on overcoming the following problems:
a. "Best" values of Ei and Pi ms t be chosen.

b. Based on uncertainties in these quantities a weighting matrix

E must be formed.

*For a two-parameter fit to determine b, and b, in an approximation of

the linear form P, = b, + bE., Eq. (263 expands to

bl=!:<zwiPi><zWiEi>_<zwiPiEi><EwiEi>yD ’
b2=[ -CZW:‘LP:'L)(ZwiEi)+<ZwiPiEi><zwi>]/D ’

2
- ; 2 \ S
where the determinant D = ( wiEi )( / Wi > - ( wiEi

and
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c. A functional form f(Ei; b) must be chosen. It must fit the

observed data and lead to sensible interpolated values.

d.. A method must be found to extract from f(E; E) the energy and
uncertainty for an unknown energy E given the corresponding peak position

P zxop.

Problems a and b have been discussed in the early part of this
section, but a prescription must still be given below for the formation
of W. Item c can generally be resolved by a function very close to a
straight line, especially if linearization techniques have been used.

In such a case there is little danger of nonphysical interpolated wvalues.
Finding the E for a given P is trivial for the strictly linear case,

but might involve iterative techniques if the experimenter is forced to
choose an unfavorable form for f(E; b). We treat later the determination

of a standard error for E.

Forming the weight matrix is not formidable in the assumed case of
uncorrelated input data, since only the diagonal elements wii are non-
zero, one to represent the weight of each data point. It can be shown
(Sc59) that if only the errors in the Pi are significant the minimum
variance result is obtained with Wi = l/pi. This should be the standard
procedure whenever the estimated relative error of the calibration energy
is small compared with that of the peak position. This condition is met
with well-established calibration lines such as ®°®Hg or '®7Cs or annihi-
lation radiation, but is in jeopardy if more poorly known sources must
be employed. A reasonable procedure, followed by the authors, is to use

the weight given by
2 3f VW 2
=t () @, (27)

where %%T is Just the slope of the P vs E relation in the neighborhood
of Ei' This relation performs the necessary de-weighting in the case
that Ei is poorly known, but we have not shown that it leads to param-
eters or interpolated values having minimum variance for the given data

set except in the case of a one-parameter fit. Use of the weight of
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Eq. (27) gives the same result, after analysis, as the bivariate least-
squares treatment of Deming (Dell), which recognizes at its outset

uncertainties in both coordinates of experimental data.

A word is necessary cohcerning the proper introduction of estimated
systematic errors into the system. When such errors seem to be uncor-
related from one point to the next, they may be incorporated into the
Py However, i1if the systematic uncertainty affects all the Pi in a
similar manner,® it should not be included prior to the formation of a
diagonal weighting matrix.®¥ After the iInterpolation for the unknown
energy has been completed, the estimated effect of the systematic uncer-
teinty on the final answers should be included in the final error esti-
mate. If this rule of procedure is not followed, reasonable p; can lead

to quite unreasonably small error estimates for interpolated values.

Errors in the final interpolated energies may be based on the input
errors <N in Pi and perhaps significant errors € in some of the cali-
bration energies Ei' We have available the output (previously) unknown
energy E gained from the final implicit relationship P = f(E; E) =

bcfo(E)' The parameters bo are also known, along with an estimate of

fhe parameter variance matrixi v(b) =q* = [E?E FT .

*One example might be a possible gain or zero drift between calibration
data and measurement of the spectrum from the unknown.

*¥Such a case can be handled using a nondiagonal weighting matrix with
little additional labor, provided that the computations are being per-
formed by machine. In all simple cases which have been considered, the
results are equivalent to the recommended procedure. However, the non-
diagonal weighting allows for great flexibility in handling estimable
systematic errors which affect only certain parts of the data. In this
general case the weight matrix is taken as the inverse of the variance
matrix of the input data.

#¥*¥This estimate depends wholly upon the weighting matrix W for its infor-
mation, so it assumes that f(E; b) properly fits the input data within
the errors p, used in forming W. A partially defensible and popular
approach is to test the ratio ™2/v" = 8/(I - £), which should be about
unity if the degree of fit is consonant with estimated errors, and use
V(b)) =S Q'/(I - £) instead of V(b) as given above. S is from Eq.

TEST. This method assumes that the relative weights assigned to the

data points are appropriate but that all the errors should be increased
by a fixed scaling factor. If input errors have been estimated care-
fully, it is unlikely that y' should be used when it is smaller than V.
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The estimated standard errors in the fitting parameters bo are just
the square root of the diagonal elements of V(b). However, since the
parameters are heavily correlated, the off-diagonal terms must be con-
sidered to obtain a reasonable estimate for the error e in the unknown
energy E. This would be a simple problem if the solution for E were
not buried in the implicit relation P = f(E: b).

In any case one must form, by numerical means if necessary, the
partial derivatives 3E/OP and h0 = BE/abo for all ¢. This requirement
implies a calculational advantage if the functional form for f is easily

solved for E. One then hsas
v(b) b (28)

1f the error p in P is independent of the errors in the parameters. If
there were several unknown energies Ek’ the above treatment could be cast
in matrix notation for easy handling. In this case, one obtains a vari-
ance matrix which expresses the errors in all the output energies as well
as what are likely to be important correlations between them. These
correlations are significant if the output energy values from one experi-
ment are to be used as input data for further data analysis, just as the

off-diagonal terms in V(b) are important in Eq. (28).

VI. CONCLUSION

This report has dealt in detall with methods for analyzing energy
calibration data, but we suggest that obtaining high-quality experimental
results is the difficult task which confronts the scintillation spectrom-
etrist. The authors contemplate below a salient class of measurements
and inventions which, if accomplished, could lead to improved accuracy,
with less difficulty both in the laboratory and at the computer. The

order does not connote priority.

A. Additional Standard Sources

Error limits much less than 0.1% are evidently difficult to attain

by any gamma-spectrometric method. At the present, too few gamma rays
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have been determined by diffraction or magnetic methods for the scintil-
lation spectroscopist who requires standards having well-isolated lines.
Standards are badly needed in some energy ranges, as evidenced by the
low precision to which many of the most useful standard energies are
known (see Ro63, and Table 1 in Sect. II). Those having suitable egquip-
ment should be encouraged to take up this assignment, which lithium-

drifted germanium detectors will apparently make practical.

B. NaI(Tl) Response Data

The data available demonstrate conclusively the nonproportional
response of NaI(Tl) (see Sect. IV). Even more precise and complete
information is required to allow latér experimenters to linearize their
experimental energy scales. Experimental results in this field should

be presented in a manner which eases the derivation of such corrections.

C. A Reliable "Sliding" Pulser

We have indicated in Sect. IV that sliding pulsers would provide a
good check of electronic linearity if a design could be found with test-
able linearity, adequate pulse repetition rate (~500 COUnts/sec), and
appropriate pulse shape. This project deserves more attention from

instrumentation experts.

D. A Stable Light Pulser

To meke gain stabilization fully practical, a small, convenient,
and quite reliable stable light pulser yielding an appropriate pulse
shape must be invented for routine inclusion into scintillator assemblies.
The light intensity will have to be adjustable over the range of impor-
tance to scintillation spectroscopy. It is desired but not essential
that the light output be a precisely known function of the operating
conditions so that system proportionality curves might be obtained

using it as the light source.

E. Comprehensive Gain Stabilizers

Good gain stabilization methods have been discussed in Sect. III,
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but a simple one must be devised which includes the multiplier phototube
within the stabilized loop. Unless the above-mentioned light pulser
(Sect. VI.D.) is realized, the methods of Dudley and Scarpatetti (Dubl)
and of Hinricksen (Hi64k) using tagged pulses from radicactive sources
should be developed. If this step could be quite generally accomplished,
a shorter section on drifts would appear in the next publication of

this type. A statistical analysis is required to indicate whether the
error signal ought to be generated from counting rate differences or

from accumulated count differences.

F. Premium High-Linearity Low-Drift Pulse-Height Analyzers

If linearity checks and corrections are not always to plague the
scintillation spectroscopists, pulse~height analyzers must be produced
that are almost an order of magnitude more linear than those now adver-
tized, and less sensitive to changes in input pulse shape. Analyzer

stability could more easily be improved beyond any need for concern.

When these innovations are available, each scintillation spectros-
copist will be able to relax a little concerning questions of technique

and devote more attention to his own discipline.
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