582 research outputs found

    Dynamical and quasistatic structural relaxation paths in Pd_(40)Ni_(40)P_(20) glass

    Get PDF
    By sequential heat treatment of a Pd_(40)Ni_(40)P_(20) metallic glass at temperatures and durations for which Ī±-relaxation is not possible, dynamic, and quasistatic relaxation paths below the glass transition are identified via ex situ ultrasonic measurements following each heat treatment. The dynamic relaxation paths are associated with hopping between nonequilibrium potential energy states of the glass, while the quasistatic relaxation path is associated with reversible Ī²-relaxation events toward quasiequilibrium states. These quasiequilibrium states are identified with secondary potential energy minima that exist within the inherent energy minimum of the glass, thereby supporting the concept of the sub-basin/metabasin organization of the potential-energy landscape

    Microscopic Model for Granular Stratification and Segregation

    Full text link
    We study segregation and stratification of mixtures of grains differing in size, shape and material properties poured in two-dimensional silos using a microscopic lattice model for surface flows of grains. The model incorporates the dissipation of energy in collisions between rolling and static grains and an energy barrier describing the geometrical asperities of the grains. We study the phase diagram of the different morphologies predicted by the model as a function of the two parameters. We find regions of segregation and stratification, in agreement with experimental finding, as well as a region of total mixing.Comment: 4 pages, 7 figures, http://polymer.bu.edu/~hmakse/Home.htm

    Piiiā€37

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109838/1/cptclpt2006257.pd

    Clinical and Molecular Characteristics of Post-Colonoscopy Colorectal Cancer: A Population-based Study

    Get PDF
    Colonoscopy provides incomplete protection from colorectal cancer (CRC), but determinants of post-colonoscopy CRC are not well understood. We compared clinical features and molecular characteristics of CRCs diagnosed at different time intervals after a previous colonoscopy

    In Vivo Imaging of Vesicular Monoamine Transporters in Human Brain Using [ 11 C]Tetrabenazine and Positron Emission Tomography

    Full text link
    The pharmacokinetics of [ 11 CJtetrabenazine, a high-affinity radioligand for the monoamine vesicular transporter, were determined in living human brain using in vivo imaging by positron emission tomography (PET). The radiotracer showed high brain uptake and rapid washout from all brain regions with relatively slower clearance from regions of highest concentrations of monoamine vesicular transporters (striatum), resulting in clear differential visualization of these structures at short intervals after injection (10ā€“20 min). As the first human PET imaging study of a vesicular neurotransmitter transporter, these experiments demonstrate that external imaging of vesicular transporters forms a new and valuable approach to the in vivo quantification of monoaminergic neurons, with potential application to the in vivo study of neurodegenerative disorders such as Parkinson's disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65743/1/j.1471-4159.1993.tb03521.x.pd

    Lipid bilayer thickness determines cholesterol's location in model membranes

    Get PDF
    Cholesterol is an essential biomolecule of animal cell membranes, and an important precursor for the biosynthesis of certain hormones and vitamins. It is also thought to play a key role in cell signaling processes associated with functional plasma membrane microdomains (domains enriched in cholesterol), commonly referred to as rafts. In all of these diverse biological phenomena, the transverse location of cholesterol in the membrane is almost certainly an important structural feature. Using a combination of neutron scattering and solid-state 2H NMR, we have determined the location and orientation of cholesterol in phosphatidylcholine (PC) model membranes having fatty acids of different lengths and degrees of unsaturation. The data establish that cholesterol reorients rapidly about the bilayer normal in all the membranes studied, but is tilted and forced to span the bilayer midplane in the very thin bilayers. The possibility that cholesterol lies flat in the middle of bilayers, including those made from PC lipids containing polyunsaturated fatty acids (PUFAs), is ruled out. These results support the notion that hydrophobic thickness is the primary determinant of cholesterol's location in membranes

    Reply

    Full text link
    No abstract.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34885/1/85_ftp.pd

    Olfactory dysfunction, central cholinergic integrity and cognitive impairment in Parkinsonā€™s disease

    Get PDF
    Olfactory dysfunction is common in subjects with Parkinsonā€™s disease. The pathophysiology of such dysfunction, however, remains poorly understood. Neurodegeneration within central regions involved in odour perception may contribute to olfactory dysfunction in Parkinsonā€™s disease. Central cholinergic deficits occur in Parkinsonā€™s disease and cholinergic neurons innervate regions, such as the limbic archicortex, involved in odour perception. We investigated the relationship between performance on an odour identification task and forebrain cholinergic denervation in Parkinsonā€™s disease subjects without dementia. Fifty-eight patients with Parkinsonā€™s disease (mean Hoehn and Yahr stage 2.5 Ā± 0.5) without dementia (mean Mini-Mental State Examination, 29.0 Ā± 1.4) underwent a clinical assessment, [11C]methyl-4-piperidinyl propionate acetylcholinesterase brain positron emission tomography and olfactory testing with the University of Pennsylvania Smell Identification Test. The diagnosis of Parkinsonā€™s disease was confirmed by [11C]dihydrotetrabenazine vesicular monoamine transporter type 2 positron emission tomography. We found that odour identification test scores correlated positively with acetylcholinesterase activity in the hippocampal formation (r = 0.56, P < 0.0001), amygdala (r = 0.50, P < 0.0001) and neocortex (r = 0.46, P = 0.0003). Striatal monoaminergic activity correlated positively with odour identification scores (r = 0.30, P < 0.05). Multiple regression analysis including limbic (hippocampal and amygdala) and neocortical acetylcholinesterase activity as well as striatal monoaminergic activity, using odour identification scores as the dependent variable, demonstrated a significant regressor effect for limbic acetylcholinesterase activity (F = 10.1, P < 0.0001), borderline for striatal monoaminergic activity (F = 1.6, P = 0.13), but not significant for cortical acetylcholinesterase activity (F = 0.3, P = 0.75). Odour identification scores correlated positively with scores on cognitive measures of episodic verbal learning (r = 0.30, P < 0.05). These findings indicate that cholinergic denervation of the limbic archicortex is a more robust determinant of hyposmia than nigrostriatal dopaminergic denervation in subjects with moderately severe Parkinson's disease. Greater deficits in odour identification may identify patients with Parkinson's disease at risk for clinically significant cognitive impairment
    • ā€¦
    corecore