5,859 research outputs found

    Fundamentals of the oxidation protection of columbium and tantalum Semiannual report, Apr. 1 - Oct. 1, 1967

    Get PDF
    Oxidation protection of niobium and tantalum by their silicide

    Fundamentals of the oxidation protection of columbium and tantalum Semiannual report, 1 Apr. - 1 Oct. 1969

    Get PDF
    Oxidation protection by silicides of niobium and tantalum, and thermochemical dat

    Fundamentals of the oxidation protection of tantalum Final report

    Get PDF
    Fundamentals of oxidation protection of tantalum by silicide

    Wannier-Stark ladders in one-dimensional elastic systems

    Full text link
    The optical analogues of Bloch oscillations and their associated Wannier-Stark ladders have been recently analyzed. In this paper we propose an elastic realization of these ladders, employing for this purpose the torsional vibrations of specially designed one-dimensional elastic systems. We have measured, for the first time, the ladder wave amplitudes, which are not directly accessible either in the quantum mechanical or optical cases. The wave amplitudes are spatially localized and coincide rather well with theoretically predicted amplitudes. The rods we analyze can be used to localize different frequencies in different parts of the elastic systems and viceversa.Comment: 10 pages, 6 figures, accepted in Phys. Rev. Let

    Angular Radii of Stars via Microlensing

    Full text link
    We outline a method by which the angular radii of giant and main sequence stars in the Galactic bulge can be measured to a few percent accuracy. The method combines ground-based photometry of caustic-crossing bulge microlensing events, with a handful of precise astrometric measurements of the lensed star during the event, to measure the angular radius of the source, theta_*. Dense photometric coverage of one caustic crossing yields the crossing timescale dt. Less frequent coverage of the entire event yields the Einstein timescale t_E and the angle phi of source trajectory with respect to the caustic. The photometric light curve solution predicts the motion of the source centroid up to an orientation on the sky and overall scale. A few precise astrometric measurements therefore yield theta_E, the angular Einstein ring radius. Then the angular radius of the source is obtained by theta_*=theta_E(dt/t_E) sin(phi). We argue that theta_* should be measurable to a few percent accuracy for Galactic bulge giant stars using ground-based photometry from a network of small (1m-class) telescopes, combined with astrometric observations with a precision of ~10 microarcsec to measure theta_E. We find that a factor of ~50 times fewer photons are required to measure theta_E to a given precision for binary-lens events than single-lens events. Adopting parameters appropriate to the Space Interferometry Mission (SIM), ~7 min of SIM time is required to measure theta_E to ~5% accuracy for giant sources in the bulge. For main-sequence sources, theta_E can be measured to ~15% accuracy in ~1.4 hours. With 10 hrs of SIM time, it should be possible to measure theta_* to ~5% for \~80 giant stars, or to 15% for ~7 main sequence stars. A byproduct of such a campaign is a significant sample of precise binary-lens mass measurements.Comment: 13 pages, 3 figures. Revised version, minor changes, required SIM integration times revised upward by ~60%. Accepted to ApJ, to appear in the March 20, 2003 issue (v586

    Elastic Wave Transmission at an Abrupt Junction in a Thin Plate, with Application to Heat Transport and Vibrations in Mesoscopic Systems

    Get PDF
    The transmission coefficient for vibrational waves crossing an abrupt junction between two thin elastic plates of different widths is calculated. These calculations are relevant to ballistic phonon thermal transport at low temperatures in mesoscopic systems and the Q for vibrations in mesoscopic oscillators. Complete results are calculated in a simple scalar model of the elastic waves, and results for long wavelength modes are calculated using the full elasticity theory calculation. We suggest that thin plate elasticty theory provide a useful and tractable approximation to the full three dimensional geometry.Comment: 35 pages, including 12 figure

    Artemis Curation: Preparing for Sample Return from the Lunar South Pole

    Get PDF
    Space Policy Directive-1 mandates that the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations. In addition, the Vice President stated that It is the stated policy of this administration and the United States of America to return American astronauts to the Moon within the next five years, that is, by 2024. These efforts, under the umbrella of the recently formed Artemis Program, include such historic goals as the flight of the first woman to the Moon and the exploration of the lunar south-polar region. Among the top priorities of the Artemis Program is the return of a suite of geologic samples, providing new and significant opportunities for progressing lunar science and human exploration. In particular, successful sample return is necessary for understanding the history of volatiles in the Solar System and the evolution of the Earth-Moon system, fully constraining the hazards of the lunar polar environment for astronauts, and providing the necessary data for constraining the abundance and distribution of resources for in-situ resource utilization (ISRU). Here we summarize the ef-forts of the Astromaterials Acquisition and Curation Office (hereafter referred to as the Curation Office) to ensure the success of Artemis sample return (per NASA Policy Directive (NPD) 7100.10E)

    Neuropathologic basis of frontotemporal dementia in progressive supranuclear palsy.

    Get PDF
    BackgroundProgressive supranuclear palsy (PSP) is a neurodegenerative disorder characterized by neuronal loss in the extrapyramidal system with pathologic accumulation of tau in neurons and glia. The most common clinical presentation of PSP, referred to as Richardson syndrome, is that of atypical parkinsonism with vertical gaze palsy, axial rigidity, and frequent falls. Although cognitive deficits in PSP are often ascribed to subcortical dysfunction, a subset of patients has dementia with behavioral features similar to the behavioral variant of frontotemporal dementia. In this study we aimed to identify the clinical and pathological characteristics of PSP presenting with frontotemporal dementia.MethodsIn this study, we compared clinical and pathologic characteristics of 31 patients with PSP with Richardson syndrome with 15 patients with PSP with frontotemporal dementia. For pathological analysis, we used semiquantitative methods to assess neuronal and glial lesions with tau immunohistochemistry, as well image analysis of tau burden using digital microscopic methods.ResultsWe found greater frontal and temporal neocortical neuronal tau pathology in PSP with frontotemporal dementia compared with PSP with Richardson syndrome. White matter tau pathology was also greater in PSP with frontotemporal dementia than PSP with Richardson syndrome. Genetic and demographic factors were not associated with atypical distribution of tau pathology in PSP with frontotemporal dementia.ConclusionsThe results confirm the subset of cognitive-predominant PSP mimicking frontotemporal dementia in PSP. PSP with frontotemporal dementia has distinct clinical features that differ from PSP with Richardson syndrome, as well as differences in distribution and density of tau pathology. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society

    Qubit compatible superconducting interconnects

    Full text link
    We present a fabrication process for fully superconducting interconnects compatible with superconducting qubit technology. These interconnects allow for the 3D integration of quantum circuits without introducing lossy amorphous dielectrics. They are composed of indium bumps several microns tall separated from an aluminum base layer by titanium nitride which serves as a diffusion barrier. We measure the whole structure to be superconducting (transition temperature of 1.1\,K), limited by the aluminum. These interconnects have an average critical current of 26.8\,mA, and mechanical shear and thermal cycle testing indicate that these devices are mechanically robust. Our process provides a method that reliably yields superconducting interconnects suitable for use with superconducting qubits

    Anomalous quantum chaotic behavior in nanoelectromechanical structures

    Full text link
    It is predicted that for sufficiently strong electron-phonon coupling an anomalous quantum chaotic behavior develops in certain types of suspended electro-mechanical nanostructures, here comprised by a thin cylindrical quantum dot (billiard) on a suspended rectangular dielectric plate. The deformation potential and piezoelectric interactions are considered. As a result of the electron-phonon coupling between the two systems the spectral statistics of the electro-mechanic eigenenergies exhibit an anomalous behavior. If the center of the quantum dot is located at one of the symmetry axes of the rectangular plate, the energy level distributions correspond to the Gaussian Orthogonal Ensemble (GOE), otherwise they belong to the Gaussian Unitary Ensemble (GUE), even though the system is time-reversal invariant.Comment: 4 pages, pdf forma
    corecore