2,416 research outputs found

    Effects of interplanetary transport on derived energetic particle source strengths

    Get PDF
    We study the transport of solar energetic particles (SEPs) in the inner heliosphere in order to relate observations made by an observer at 1 AU to the number and total energy content of accelerated particles at the source, assumed to be near the Sun. We use a numerical simulation that integrates the trajectories of a large number of individual particles moving in the interplanetary magnetic field. We model pitch angle scattering and adiabatic cooling of energetic ions with energies from 50 keV nucleon^(−1) to 100 MeV nucleon^(−1). Among other things, we determine the number of times that particles of a given energy cross 1 AU and the average energy loss that they suffer because of adiabatic deceleration in the solar wind. We use a number of different forms of the interplanetary spatial diffusion coefficient and a wide range of scattering mean-free paths and consider a number of different ion species in order to generate a wide range of simulation results that can be applied to individual SEP events. We apply our simulation results to observations made at 1 AU of the 20 February 2002 solar energetic particle event, finding the original energy content of several species. We find that estimates of the source energy based on SEP measurements at 1 AU are relatively insensitive to the mean-free path and scattering scheme if adiabatic cooling and multiple crossings are taken into account

    Morphological variation of the newly confirmed population of the javelin sand boa, Eryx jaculus (Linnaeus, 1758) (Serpentes, erycidae) in Sicily, Italy

    Get PDF
    The presence of the Javelin sand boa in Sicily has recently been confirmed. Here the morphological characters and sexual dimorphism of the Sicilian population of Eryx jaculus are presented. Seven meristic and six metric characters in 96 specimens from Sicily were examined. The results show that tail length, snout-vent length, the distance between nostrils and the number of ventral and subcaudal scales are different between sexes. The characters found in the Sicilian population of the Javelin sand boa resemble those of the African population (ssp. jaculus) rather than the Eurasian population (ssp. turcicus), but biomolecular studies are necessary to understand its taxonomic identity

    On the Structure and Scale of Cosmic Ray Modified Shocks

    Full text link
    Strong astrophysical shocks, diffusively accelerating cosmic rays (CR) ought to develop CR precursors. The length of such precursor LpL_{p} is believed to be set by the ratio of the CR mean free path λ\lambda to the shock speed, i.e., Lp∌cλ/Vsh∌crg/VshL_{p}\sim c\lambda/V_{sh}\sim cr_{g}/V_{sh}, which is formally independent of the CR pressure PcP_{c}. However, the X-ray observations of supernova remnant shocks suggest that the precursor scale may be significantly shorter than LpL_{p} which would question the above estimate unless the magnetic field is strongly amplified and the gyroradius rgr_{g} is strongly reduced over a short (unresolved) spatial scale. We argue that while the CR pressure builds up ahead of the shock, the acceleration enters into a strongly nonlinear phase in which an acoustic instability, driven by the CR pressure gradient, dominates other instabilities (at least in the case of low ÎČ\beta plasma). In this regime the precursor steepens into a strongly nonlinear front whose size scales with \emph{the CR pressure}as Lf∌Lp⋅(Ls/Lp)2(Pc/Pg)2L_{f}\sim L_{p}\cdot(L_{s}/L_{p})^{2}(P_{c}/P_{g})^{2}, where LsL_{s} is the scale of the developed acoustic turbulence, and Pc/PgP_{c}/P_{g} is the ratio of CR to gas pressure. Since Lsâ‰ȘLpL_{s}\ll L_{p}, the precursor scale reduction may be strong in the case of even a moderate gas heating by the CRs through the acoustic and (possibly also) the other instabilities driven by the CRs.Comment: EPS 2010 paper, to appear in PPC

    Hybrid viscosity and the magnetoviscous instability in hot, collisionless accretion disks

    Full text link
    We aim to illustrate the role of hot protons in enhancing the magnetorotational instability (MRI) via the ``hybrid'' viscosity, which is due to the redirection of protons interacting with static magnetic field perturbations, and to establish that it is the only relevant mechanism in this situation. It has recently been shown by Balbus \cite{PBM1} and Islam & Balbus \cite{PBM11} using a fluid approach that viscous momentum transport is key to the development of the MRI in accretion disks for a wide range of parameters. However, their results do not apply in hot, advection-dominated disks, which are collisionless. We develop a fluid picture using the hybrid viscosity mechanism, that applies in the collisionless limit. We demonstrate that viscous effects arising from this mechanism can significantly enhance the growth of the MRI as long as the plasma \beta \gapprox 80. Our results facilitate for the first time a direct comparison between the MHD and quasi-kinetic treatments of the magnetoviscous instability in hot, collisionless disks.Comment: To appear in the proceedings of the first Kodai-Trieste workshop on Plasma Astrophysics (Aug 27-Sept 07 2007), Springer Astrophysics and Space Science Proceedings serie

    How efficient are coronal mass ejections at accelerating solar energetic particles?

    Get PDF
    The largest solar energetic particle (SEP) events are thought to be due to particle acceleration at a shock driven by a fast coronal mass ejection (CME). We investigate the efficiency of this process by comparing the total energy content of energetic particles with the kinetic energy of the associated CMEs. The energy content of 23 large SEP events from 1998 through 2003 is estimated based on data from ACE, GOES, and SAMPEX, and interpreted using the results of particle transport simulations and inferred longitude distributions. CME data for these events are obtained from SOHO. When compared to the estimated kinetic energy of the associated coronal mass ejections (CMEs), it is found that large SEP events can extract ~10% or more of the CME kinetic energy. The largest SEP events appear to require massive, very energetic CMEs

    Polymerizable deep eutectic solvents: Convenient reactive dispersion media for the preparation of novel multi-walled carbon nanotubes-based functional materials

    Get PDF
    A new straightforward and green approach for the covalent functionalization of multi-walled carbon nanotubes (MWCNTs) was developed. This carbon nanostructure was efficiently derivatized by polymerizing proper deep eutectic monomers (DEM), a subclass of deep eutectic solvents (DES), based on a series of mono- and bis-vinyl imidazolium salts endowed with different functional groups (–OH, –NH2, –NH3+Br–) in the side chain or in the spacer. Herein, DEM systems played a triple role as convenient dispersion media for MWCNTs, efficient reactive systems, and also as structure-directing agents for the radical-initiated polymerization process onto the surface of MWCNTs. In addition, the new methodology allowed obtaining highly functionalized hybrid materials, as shown by thermogravimetric analyses, in short reaction times (<1h). Transmission electron microscopy (TEM) revealed that the polymeric network orderly develops along the surface of the nanotubes, which act as templating agent for both mono- and bis-vinyl imidazolium salts, despite the random nature of the polymerization process for the latter species. This new functionalization strategy of MWCNTs stands out for its environmentally friendly and time-saving nature leading to the formation of materials with significant potential for applications in a plethora of research fields. As a proof of their possible application, we tested these new hybrid materials as recoverable and recyclable catalysts for the conversion of CO2 into cyclic carbonates under solvent-free conditions, showing good catalytic performances, even in the absence of additional co-catalysts

    Subdiffusive transport in intergranular lanes on the Sun. The Leighton model revisited

    Full text link
    In this paper we consider a random motion of magnetic bright points (MBP) associated with magnetic fields at the solar photosphere. The MBP transport in the short time range [0-20 minutes] has a subdiffusive character as the magnetic flux tends to accumulate at sinks of the flow field. Such a behavior can be rigorously described in the framework of a continuous time random walk leading to the fractional Fokker-Planck dynamics. This formalism, applied for the analysis of the solar subdiffusion of magnetic fields, generalizes the Leighton's model.Comment: 7 page

    Observations of the 2019 April 4 Solar Energetic Particle Event at the Parker Solar Probe

    Get PDF
    A solar energetic particle event was detected by the Integrated Science Investigation of the Sun (IS⊙IS) instrument suite on Parker Solar Probe (PSP) on 2019 April 4 when the spacecraft was inside of 0.17 au and less than 1 day before its second perihelion, providing an opportunity to study solar particle acceleration and transport unprecedentedly close to the source. The event was very small, with peak 1 MeV proton intensities of ~0.3 particles (cmÂČ sr s MeV)⁻Âč, and was undetectable above background levels at energies above 10 MeV or in particle detectors at 1 au. It was strongly anisotropic, with intensities flowing outward from the Sun up to 30 times greater than those flowing inward persisting throughout the event. Temporal association between particle increases and small brightness surges in the extreme-ultraviolet observed by the Solar TErrestrial RElations Observatory, which were also accompanied by type III radio emission seen by the Electromagnetic Fields Investigation on PSP, indicates that the source of this event was an active region nearly 80° east of the nominal PSP magnetic footpoint. This suggests that the field lines expanded over a wide longitudinal range between the active region in the photosphere and the corona
    • 

    corecore