7,468 research outputs found

    Quantum turbulence and correlations in Bose-Einstein condensate collisions

    Full text link
    We investigate numerically simulated collisions between experimentally realistic Bose-Einstein condensate wavepackets, within a regime where highly populated scattering haloes are formed. The theoretical basis for this work is the truncated Wigner method, for which we present a detailed derivation, paying particular attention to its validity regime for colliding condensates. This paper is an extension of our previous Letter [A. A. Norrie, R. J. Ballagh, and C. W. Gardiner, Phys. Rev. Lett. 94, 040401 (2005)] and we investigate both single-trajectory solutions, which reveal the presence of quantum turbulence in the scattering halo, and ensembles of trajectories, which we use to calculate quantum-mechanical correlation functions of the field

    Quantum turbulence in condensate collisions: an application of the classical field method

    Full text link
    We apply the classical field method to simulate the production of correlated atoms during the collision of two Bose-Einstein condensates. Our non-perturbative method includes the effect of quantum noise, and provides for the first time a theoretical description of collisions of high density condensates with very large out-scattered fractions. Quantum correlation functions for the scattered atoms are calculated from a single simulation, and show that the correlation between pairs of atoms of opposite momentum is rather small. We also predict the existence of quantum turbulence in the field of the scattered atoms--a property which should be straightforwardly measurable.Comment: 5 pages, 3 figures: Rewritten text, replaced figure

    Number-Phase Wigner Representation for Efficient Stochastic Simulations

    Full text link
    Phase-space representations based on coherent states (P, Q, Wigner) have been successful in the creation of stochastic differential equations (SDEs) for the efficient stochastic simulation of high dimensional quantum systems. However many problems using these techniques remain intractable over long integrations times. We present a number-phase Wigner representation that can be unraveled into SDEs. We demonstrate convergence to the correct solution for an anharmonic oscillator with small dampening for significantly longer than other phase space representations. This process requires an effective sampling of a non-classical probability distribution. We describe and demonstrate a method of achieving this sampling using stochastic weights.Comment: 7 pages, 1 figur

    Three-body recombination of ultracold Bose gases using the truncated Wigner method

    Get PDF
    We apply the truncated Wigner method to the process of three-body recombination in ultracold Bose gases. We find that within the validity regime of the Wigner truncation for two-body scattering, three-body recombination can be treated using a set of coupled stochastic differential equations that include diffusion terms, and can be simulated using known numerical methods. As an example we investigate the behaviour of a simple homogeneous Bose gas.Comment: Replaced paper same as original; correction to author list on cond-mat mad

    Number-Phase Wigner Representation for Scalable Stochastic Simulations of Controlled Quantum Systems

    Full text link
    Simulation of conditional master equations is important to describe systems under continuous measurement and for the design of control strategies in quantum systems. For large bosonic systems, such as BEC and atom lasers, full quantum field simulations must rely on scalable stochastic methods whose convergence time is restricted by the use of representations based on coherent states. Here we show that typical measurements on atom-optical systems have a common form that allows for an efficient simulation using the number-phase Wigner (NPW) phase-space representation. We demonstrate that a stochastic method based on the NPW can converge over an order of magnitude longer and more precisely than its coherent equivalent. This opens the possibility of realistic simulations of controlled multi-mode quantum systems.Comment: 5 pages, 1 figur

    Survey of Low Water Mark

    Get PDF

    Scalable quantum field simulations of conditioned systems

    Full text link
    We demonstrate a technique for performing stochastic simulations of conditional master equations. The method is scalable for many quantum-field problems and therefore allows first-principles simulations of multimode bosonic fields undergoing continuous measurement, such as those controlled by measurement-based feedback. As examples, we demonstrate a 53-fold speed increase for the simulation of the feedback cooling of a single trapped particle, and the feedback cooling of a quantum field with 32 modes, which would be impractical using previous brute force methods.Comment: 5 pages, 2 figure

    Tripartite entanglement and threshold properties of coupled intracavity downconversion and sum-frequency generation

    Get PDF
    The process of cascaded downconversion and sum-frequency generation inside an optical cavity has been predicted to be a potential source of three-mode continuous-variable entanglement. When the cavity is pumped by two fields, the threshold properties have been analysed, showing that these are more complicated than in well-known processes such as optical parametric oscillation. When there is only a single pumping field, the entanglement properties have been calculated using a linearised fluctuation analysis, but without any consideration of the threshold properties or critical operating points of the system. In this work we extend this analysis to demonstrate that the singly pumped system demonstrates a rich range of threshold behaviour when quantisation of the pump field is taken into account and that asymmetric polychromatic entanglement is available over a wide range of operational parameters.Comment: 24 pages, 15 figure
    • …
    corecore